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Abstract—Integrated Sensing and Communication (ISAC) sys-
tems are at the forefront of next-generation wireless technologies,
enhancing high-precision target localization. Accurate prediction
of localization performance is crucial for the design and opti-
mization of these systems. Traditionally, the Cramér-Rao Lower
Bound (CRLB) has been used as a theoretical benchmark for
estimating localization errors, but it often does not reflect actual
errors encountered in practice. The Monte Carlo simulation
method, while accurate, is computationally intensive and less
adaptable to varying parameters. To bridge this gap, we intro-
duce LocNet-Mono, a novel approach based on monotonic neural
networks, designed specifically for predicting localization errors.
This approach maintains a consistent, monotonic relationship
between input and output features, addressing the shortcomings
of traditional methods. Our numerical experiments validate the
high accuracy and efficiency of LocNet-Mono, confirming its
potential as a superior tool for performance prediction in ISAC
systems.

Index Terms—Passive localization, CRLB, Monte Carlo,
monotonic neural network, performance prediction.

I. INTRODUCTION

Integrated Sensing and Communication (ISAC) technology
is widely recognized as a cornerstone for future wireless
communication systems, particularly in 6G networks [1]
[2] [3]. Passive sensing leverages existing communication
signals to detect and monitor the environment and target
objects. These signals may either originate directly from the
target object or be reflected from surrounding objects or
environmental structures [4] [5] [6]. ISAC systems require
high localization accuracy in critical applications such as
autonomous driving, intelligent manufacturing, and drone
navigation [7]. In such scenarios, ISAC systems must ensure
reliability and stability [2]. Consequently, accrately assessing
the localization performance of ISAC systems is essential.
To address this, traditional approaches rely on theoretical
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benchmarks, such as the Cramér-Rao Lower Bound (CRLB),
or experimental methods like Monte Carlo simulations.

CRLB is a fundamental concept in estimation theory that
provides a theoretical limit on the accuracy of parameter
estimation [8]. It establishes a lower bound on the variance
of any unbiased estimator under ideal conditions. Specifically,
the variance of the unbiased estimator of the parameter is at
least equal to the inverse of the Fisher information [9]. The
CRLB is widely used in studies to evaluate the performance
of estimation methods [10] [11] [12]. While the CRLB
establishes a theoretical benchmark, practical challenges often
prevent estimation methods from achieving this bound. For
instance, the actual data distribution may deviate from the
assumed model [13], or the noise in real systems may
not follow a Gaussian distribution. As a result, the CRLB
analysis, such as that in [10], often requires approximations
and extensive calculations. These limitations can hinder the
CRLB from accurately reflecting true localization errors in
practical scenarios.

The Monte Carlo method involves conducting simulations
multiple times to approximate system behavior by generating
random samples from probability distributions [14]. A key
advantage of the Monte Carlo method is its ability to handle
complex system models and simulate diverse scenarios with
varying environmental conditions and system configurations.
For example, research in [15] [16] [17] employ Monte Carlo
simulations to evaluate localization performance. However,
challenges include the need to rerun simulations for parameter
changes or new situations, which can be cumbersome and
inefficient. Ensuring result reliability and accuracy requires
extensive Monte Carlo simulations, leading to increased com-
putational complexity and time consumption, especially with
large datasets or large-scale scenarios. Therefore, it is crucial
to balance the trade-offs between computational resources and
the desired accuracy level in simulations.

Consequently, it is crucial to develop a model that can
effectively and accurately measure localization performance.
Machine learning technology has been extensively applied
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in the prediction field. Reference [18] introduced a method
combining machine learning techniques with RAT-based lo-
calization measurements to predict a User Equipment’s (UE)
location while simultaneously evaluating the uncertainty of
the estimated location. A recent study [19] proposed quan-
tifying localization uncertainty in 5G architectures by using
a straightforward uncertainty metric and leveraging machine
learning to predict and update the uncertainty level. These
studies have enhanced the accuracy and reliability of local-
ization. Consequently, this paper adopts a novel monotonic
neural network architecture to create LocNet-Mono for accu-
rate and efficient passive localization performance prediction.
The main contributions of this paper are outlined as follows:
e The multi-layer perceptron (MLP) neural network is a
popular choice for predictive tasks, but it often overlooks
the inherent monotonic relationship between inputs and
outputs, e.g., the localization performance is propotional
to signal power. To address this limitation, we intro-
duce a novel model called LocNet-Mono, specifically
designed to guarantee a monotonic relationship between
inputs and output that tailored to our performance pre-
diction task.
o Experimental results show that the proposed LocNet-
Mono model achieves superior accuracy and efficiency
in predicting localization errors.

This paper is organized as follows: section II introduces the
received signal model and the passive localization technique
based on the time difference localization algorithm. It also
discusses preliminary approaches for estimating localization
errors using the CRLB, Monte Carlo simulations, and MLP
neural networks, highlighting their limitations in practical ap-
plications. Sections III explores the monotonic network model
and its advantages. Section IV evaluates the performance
prediction capability of the proposed neural network model in
localization through numerical experiments. Finally, Section
V summarizes this paper.

II. SYSTEM MODEL

In this section, we briefly introduces the signal model and
the passive localization method based on time difference of
arrival (TDOA) approach. Then we also introduce to predict
the localization errors via three preliminary approaches, i.e.,
the CRLB method, Monte Carlo simulation method, and the
proposed neural network method via the vanilla MLP model.

A. Signal Model and Passive Localization

ISAC systems can utilize passive localization techniques
to provide precise localization services. Passive localization
techniques is widely employed in various scenarios such as
vehicle localization, target tracking, and indoor localization.
As shown in Fig. 1, a multi-base station localization scenario
is considered, where the radiation source communicates with
the primary station, while the auxiliary stations collaborate
with the primary station to localize the radiation source. For
simplicity, we consider two dimensional localization, which
can be extended to three dimensions. The location of the
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Fig. 1: Multi-base station localization scenario.

S

radiation source is p* = [xs,ys]T. Assuming there are N

receiving stations, the locations are p! = [z, y"]" ,i =
1,..., N, then the signal received by the i-th receiving station
is

yi(t) = his(t — ) +n(t),i=1,..., N, )

where h; represents the complex channel gain from the
signal source to the i-th receiving station, s(¢) represents
the transmitted signal of the radiation source at time ¢, 7;
represents the time delay of the signal from the radiation
source to the i-th receiving station, and n;(t) represents the
noise of the i-th receiving station, which obeys a zero-mean
complex Gaussian distribution.

Passive localization technology involves determining loca-
tion of target without emitting electromagnetic signals, relying
solely on signals emitted by the target. This typically involves
a two-step process: parameter estimation and target localiza-
tion. The TDOA localization algorithm calculates the location
of the radiation source by measuring the time difference
of signal arrival at different receiving stations. The cross-
correlation function of the received signal is calculated, and its
peak value is identified as the TDOA. Once the delay estimate
is obtained, a system of equations is constructed and solved
using the location information of each receiving station to
determine the location of radiation source , as shown in (2):

”ZVW—ﬁf+W—Mf

Til =T;—T1=C"Tj

i=1,...,N, ()

where r; represents the distance from the radiation source to
the ¢-th receiving station, c is the speed of light, r;; represents
difference in distance between the radiation source and refer-
ence receiving station with respect to other receiving stations,
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and 7;; represents the delay difference between the radiation
source and reference receiving station with respect to other
receiving stations. To solve the above equations, which are
computationally complex due to their nonlinear nature, we
use the Chan algorithm [20]. This algorithm employs twice-
weighted least squares to predict the target location, offering a
non-recursive analytical solution that eliminates the need for
an initial estimate by linearizing the equations. Note that the
Chan algorithm is considered to be employed by the ISAC
system, it can be replaced with any other TDOA algorithm.
This substitution flexibility allows us to adapt to different
system requirements and preferences. In next section, we will
introduce several different preliminary approaches to estimate
the localization errors of the radiation source and analyze their
limitations.

B. Preliminary Approaches to Predicting Localization Error

1) Experimental Approach: Monte Carlo : Monte Carlo
simulations are computational algorithms that use repeated
random sampling to obtain numerical results and are com-
monly used across various fields. This paper involves setting
parameters for a specific scenario, generating extensive signal
data, executing a localization algorithm to derive errors, and
averaging these errors for the final result. The widely used
Root Mean Square Error (RMSE) to evaluate localization
errors is defined as:

M
RMSE(9) = ||+ [ )2 + (o — 3, )

i=1
where [2%,9°]" is the estimated location of the radiation
source. The estimated location is related to the environmental
parameters used, such as power P, observation time 7T,
baud rate f,, and the z, y coordinates of the radiation
source, and is expressed as 6. M represents the number
of Monte Carlo simulations. Although straightforward, this
method requires a sufficiently large M to ensure reliable
and accurate results, as shown in Fig. 2. Localization errors
exhibit significant fluctuations when M = 500. Even with
M = 2000, fluctuations persist. A smooth curve is observed
only when M = 10, 000. This indicates that the Monte Carlo
method requires a large number of simulations to produce
reliable results, leading to high computational costs. The
running times for M = 500, M = 2000 andM = 10000
on an Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz device
is 13.68min, 45.18min, and 229.76min respectively. As M
increases, the running time increases. In practice, it takes a
lot of time to get stable results. Furthermore, any change in
parameters or conditions necessitates re-simulation, further
increasing the computational burden.

2) Theoretical Approach: CRLB: CRLB is a fundamen-
tal concept in estimation theory, establishing the minimum
achievable variance of an unbiased estimator for a given
parameter. It is calculated as the inverse of the Fisher in-
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Fig. 2: An example of the RMSE obtained through Monte
Carlo experiments and corresponding CRLB.

formation matrix. The CRLB for the TDOA target estimation
results, expressed as follows [8]:

_ -1
CRLB =¢* (C"W™'C) @)
where
e’ —xy  z'—zi y'-yy oy -yl
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W is the covariance matrix of the localization estimation
errors. The Cramér-Rao lower limit of the time difference
parameter estimation iS.O'TDOA = ,\/%Tw [21]., whe}re I}
is root mean square radian frequency in the received signal
spectrum, B is the noise bandwidth of the receiver, and +y is
the equivalent Signal-to-Noise Ratio (SNR).

CRLB serves as a theoretical benchmark for the perfor-
mance of localization algorithms. However, the gap between
the CRLB and the actual errors limits the accuracy of
obtaining the true localization error, as shown as Fig. 2.
Additionally, the CRLB represents an ideal case, failing to
account for practical system factors such as sampling rate and
synchronization error. These factors complicate the accurate
description of the lower bound of localization errors.

3) Neural Network: LocNet-MLP: CRLB cannot accu-
rately measure real localization errors, and Monte Carlo
methods are computationally intensive. Neural networks have
gained attention for their ability to capture complex, nonlin-
ear relationships in data, prompting many studies to apply
machine learning techniques to predict the performance of
various localization methods. Once trained, a machine learn-
ing model can directly predict results under new parameters or
conditions without additional experiments or simulations. To
predict localization performance, we apply a MLP network,
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which consists of an input layer, multiple hidden layers, and
an output layer. The input layer receives a vector 0 of size 5,
representing the effects of power, observation time, baud rate,
and the z, y coordinates of the radiation source. The hidden
layers are structured as [8, 16,8, 16, 8, 16], each incorporating
linear transformations, batch normalization, and a ReLU acti-
vation function. These elements enhance the network’s ability
to learn complex patterns by introducing nonlinearities while
maintaining training efficiency and stability. The output layer
contains a single linear layer to produce prediction results.
These fully connected layers enable the network to learn
complex mappings between input features and outputs. For
simplicity, we refer to this method of predicting localization
error as LocNet-MLP.

Despite its effectiveness, LocNet-MLP has some limita-
tions, particularly in ensuring output monotonicity. For ex-
ample, the localization errors should decrease as the SNR
increases, assuming other parameters are constant. However,
the prediction results of LocNet-MLP may not be monotonic.
Therefore, in the next section, we introduce the LocNet-Mono
network to predict the localization errors and maintain the
monotonicity of input and output.

III. MONOTONIC NEURAL NETWORK: LOCNET-MONO

Assuming all other parameters remain constant, the lo-
calization error is expected to decrease with an increase
in power, observation time, and baud rate. A monotonic
network ensures that the model learns the correct input-output
relationship, aligning more closely with the actual system
rules. Traditional MLPs lack embedded prior knowledge,
such as monotonic relationships between parameters, and
therefore often require large datasets to effectively learn these
relationships. In contrast, the monotonic network enforces
monotonicity between inputs and outputs by design, reducing
the need for extensive training data and potentially improving
model robustness [22] [23].

One approach involves constructing monotonic architec-
tures, such as deep lattice networks [24], which enforce
monotonicity by applying constraints within each neuron.
However, this increases model complexity, potentially re-
ducing expressiveness and affecting performance. Another
approach involves heuristic and regularized architectures.
Reference [25] proposed ensuring monotonicity for standard
ReLU networks, but computation time significantly increases
with the number of monotonic features and the model size.

A recent and novel monotonic network framework is
adopted, employing a weight-constrained architecture with
a single residual connection toachieve precise monotonic
dependencies in any subset of the input [26]. This approach
addresses the main drawbacks of limited expressiveness and
impractical complexity. The architecture of the monotonic
neural network is briefly described below:

For a scalar-valued function g(0), the function satisfies Lip-
schitz continuity with a Lipschitz constant A. The monotonic
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Fig. 3: Multi-base station localization scenario.

neural network architecture is constructed using the following
equation:

£(6) =g(6) + A\ 0, (6)

i€A

where A denotes the set of indices of the input features
for which we desire monotonicity. This residual connection
enforces monotonicity. By controlling the gradient of the
model ¢(@), we ensure that ngi lies within the interval
[=A, ] for all i € A. After adding the residual connection,
g—gi = g—gi + A > 0 is valid, which ensures that f(6) is
monotonically non-decreasing on the input subset A. The
direction and strength of monotonicity can be modified by
changing the sign of the indicator vector. A negative indicator
vector denotes a non-increasing relationship between f(6)
and 0, whereas a zero indicator vector indicates no monotonic
relationship. By adjusting the parameter A, the Lipschitz
constant of the model can be increased arbitrarily.

The layer structure of the Lipschitz neural network re-
sembles that of a MLP, with the Lipschitz constant set to
A =[=\ =)\ =)\ 0,0]. To preservethe expressiveness of the
model, the GroupSort activation function [27] is employed.
This function maintains a gradient norm of 1 across the entire
input domain, enhancing the expressiveness of the model.
We designate our monotonic neural network architecture for
predicting localization performance as LocNet-Mono.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct experiment to predict localiza-
tion performance.

TABLE I: Data generation parameters in 7~

Feature Notation Value
Sample Rate fs 10 MHz
Power P [10,70] W
Observation Time T [0.0008, 0.01] s
Baud Rate o fs/116,20,25,32,40,50,64,80,100] kHz
Target location p?® z® € [8,30] km, y* € [—20, 30] km
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For LocNet-Mono, the hyperparameter A\ is set to 10.
The value of A controls the Lipschitz constant of the neural
network, thereby limiting the rate of change of each neuron’s
output with respect to its input. Both neural network models
are trained using the Adam optimizer, with an initial learning
rate of 1073, A learning rate that is too large may result
in unstable training or failure to converge, whereas a learning
rate that is too small can lead to excessively slow convergence.
We select the ¢; norm as the loss function and use the
cosine annealing strategy to adjust the learning rate. This
approach improves training efficiency and stability, enabling
the model to converge more quickly to the optimal solution.
The training epochs is set to 200. We perform 500 Monte
Carlo experiments to ensure the accuracy and reliability of
the statistical results.

A. Dataset Generation and Processing

The feature vectors € of the dataset include power, ob-
servation time, baud rate, and the z, y coordinates of the
radiation source. The data labels represent the RMSE(6),
which is obtained from 500 Monte Carlo experiments. For
simplicity, we consider two dimensional localization, which
can be extended to three dimensions. The location of the
receiving station is shown in Fig. 3. The radiation source
signal is modulated using Binary Phase Shift Keying (BPSK).
These modulated signals are generated by the MATLAB
Communications Toolbox. For each sample in dataset 7,
various parameters are uniformly selected in the range as
shown in Table. L.

B. Performance Prediction

In this section, we compare the performance of our pro-
posed LocNet-MLP and LocNet-Mono in predicting localiza-
tion errors.

Fig. 4 shows the predicted localization errors of LocNet-
MLP and LocNet-Mono under varying power, observation
time, and baud rate, while keeping other parameters un-
changed, as well as the RMSE obtained from 10,000 Monte
Carlo experiments and corresponding CRLB. As observed
in Fig. 4, a noticeable gap exists between CRLB and the
actual localization errors, with the neural network more
accurately capturing the actual localization performance. No-
tably, LocNet-Mono demonstrates slightly better performance
compared to LocNet-MLP. Additionally, as shown in Fig. 4b,
LocNet-MLP occasionally exhibits non-monotonic behavior,
which can result in multiple local optima during optimization
and complicate the search for a global optimum. This non-
monotonicity may potentially failing to satisfy the monotonic-
ity requirements essential for practical applications. Fig. 4
show that LocNet-Mono consistently maintains the expected
monotonicity, which is crucial for solving optimization prob-
lems where network output serves as the objective function.
Fig. 5a presents a heat map of localization errors for a
radiation source moving uniformly within the red area shown
in Fig. 3, based on 10,000 Monte Carlo simulations. Fig. 5b
and Fig. 5c display the prediction results of LocNet-Mono

and LocNet-MLP, respectively. Compared to the Monte Carlo
results, the average localization error differences for LocNet-
Mono and LocNet-MLP are 5.662m and 24.768m, demon-
strating that LocNet-Mono achieves better performance.

V. CONCLUSION

This paper concentrates on predicting passive localization
performance within integrated sensing and communication
systems. To overcome the limitations of traditional theoretical
methods and empirical Monte Carlo simulations, we have
introduced a monotonic neural network named LocNet-Mono.
This model maintains a monotonic relationship between input
features and outputs, effectively addressing the drawbacks of
conventional approaches such as the CRLB and Monte Carlo
simulations. Our numerical experiments have demonstrated
that LocNet-Mono accurately and efficiently predicts local-
ization errors across a range of parameter settings.
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