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Abstract—Among different electromagnetic spectrum monitor-
ing tasks, a fundamental one is detecting the presence of weak
communication signal under non-cooperative setting. Various
detection methods have been studied in the literature. These
detection methods usually construct a proper hypothesis testing
metric to distinguish the signal-plus-noise and noise-only signals.
Information entropy based metric has recently been studied and
shown its superiority over traditional energy based metrics. We
find that it can be explained as a realization of the general
Kullback-Leibler divergence. Inspired by that, in this paper, we
propose to detect the signal using a statistic divergence called
β-divergence. Different choices of β will lead to several well
known divergences, e.g., Itakura-Saito divergence and Euclidean
distance. We study its detection performance for non-cooperative
signal sources. Both simulation and real experiments demonstrate
that β-divergence can improve detection performance for various
modulation types of communication signals.

Index Terms—Spectrum monitoring, detection, β-divergence

I. INTRODUCTION

In the past decades, rapidly developed wireless communi-
cation technology have produced different types of signals
over the space. The limited spectrum space is becoming more
and more crowded. Effectively monitoring the spectrum space
has become an important issue in cognitive radio. Due to
various factors, e.g., channel fading and frequency hopping,
the wireless communication signals are weaker even compared
with the background noise, i.e., admitting low signal-to-
noise ratio (SNR) status. Conducting non-cooperative spec-
trum monitoring task on these weak signals is difficult, which
brings serious challenges to the regulation of electromagnetic
spectrum space.

One of the most widely used detection methods is energy
detection method [1], which does not need any prior infor-
mation and can work well in the high SNR case. The energy
detection method requires reasonably computational cost and
can be applied to a variety of devices. However, when the
signal is weak, e.g., SNR is below -10dB, the performance
of the energy detection method may become unstable because
the noise causes false positives. If statistical parameters of the
signal change periodically, detection methods based on the
cyclic stationary features [2, 3] can achieve better detection
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performance than the matched filter detector [4]. However, this
method requires prior information about the signal, leading
to the limited applications in practice. There are some other
methods for blind signal detection, such as the machine
learning based technique [5–7] and information entropy based
method [8, 9]. Machine learning based methods learn a proper
binary classifier from a training set which collects a branch
of different types of signals. But their performance on sig-
nal types beyond the training set may be unstable. Entropy
based methods utilize the entropy of the signal histogram
in frequency domain [9] or the normalized power spectrum
density [8] as the test statistics, which is shown to work well
for different signal types and be robust to the uncertainty of
noise power [8, 9]. The entropy based detection method is a
promising method for non-cooperative spectrum monitoring.

The three steps of the entropy based detection method are:
i) reconstructing a proper discrete probability distribution, e.g.,
normalized signal histogram in frequency domain [9] or the
normalized power spectrum density [8], from the received
signal; ii) calculating the entropy of the obtained probability
distribution; iii) comparing the achieved entropy with the
predefined threshold to determine the existence of the signal.
From a mathematical point of view, entropy of a certain
probability can be regarded as the Kullback-Leibler (KL) di-
vergence between this probability and a reference distribution.
It motivates us to ask whether there is another divergence
measurement rather than entropy method that may have better
detection performance. Toward this end, this paper will study a
class of statistical divergence called β-divergence for detection
task. Both simulation and real experiments demonstrate that
β-divergence improves detection performance over existing
methods.

This paper is organized as follows. We first provide the
signal model and our considered problem scenario in Sec. II.
In Sec. III, we introduce the proposed detection method. Nu-
merical experiments are given in Sec. IV. Finally, conclusions
are summarized in Sec. V.

II. NON-COOPERATIVE SPECTRUM DETECTION PROBLEM

Considering to detect a given frequency band, the received
base-band signal with sampling rate fs is expressed as:

x(n) = s(n) + w(n), n = 0, 1, . . . , N − 1, (1)

where x(n) is the received signal at the sample index n, s(n) is
the primary user signal with band width B (B < fs/2), w(n)
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represents background noise, which is assumed to be zero-
mean White Gaussian Noise (WGN) with a variance of σ2

0 , N
is the overall sample size, and s(n) and w(n) are unrelated to
each other.

The spectrum detection problem can be formulated as binary
hypotheses testing problem, i.e.,

H0 : x(n) = w(n), n = 0, 1, . . . , N − 1,
H1 : x(n) = s(n) + w(n), n = 0, 1, . . . , N − 1,

(2)

where H0 and H1 represent the absence and presence of
signal occupation, respectively. For notational simplicity, we
denote by x = [x(0), x(1), . . . , x(N − 1)]T and w =
[w(0), w(1), . . . , w(N − 1)]T . Under Neyman-Pearson (NP)-
criterion, the optimal hypothesis testing is likelihood ratio test
(LRT) [10]

TLRT (x) =
p(x|H0)

p(x|H1)
(3)

But LRT detector may not be applicable since the statistical
information of the signal is not accessible, i.e., the exact
evaluation of p(x|H0) and p(x|H1) are impossible, in the
non-cooperative spectrum monitoring scenario.

Several existing works, e.g., energy detection [1], entropy
based detection [8, 9], attempt to deal this issue by construct-
ing a proper hypothesis testing function L(·) : CN 7→ R with
E [L(w)] = c, where c is a constant real number. Then the
detection decision is made by

L(x)
H1

⋛
H0

c+ ϵ, (4)

where ϵ ≥ 0 is a parameter controlling the false alarm rate
PF , i.e., P(L(w) ≥ c+ ϵ) ≤ PF .

Intuitively, it is expected that the overlap region of L(x)
under hypothesises H0 and H1 to be as small as possible. It
is equivalent to maximizing the probability of detection PD

while satisfying PF . Thus the NP-criterion for L(·) is

max
L(·),λ

P(L(x) ≥ λ | H1) s.t. P(L(w) ≥ λ) ≤ PF . (5)

However, directly solving the above problem faces several
challenges, e.g., optimizing high-dimensional function map-
ping L(·) is intractable, evaluating P(·) is also difficult since
the statistical information of signal is inaccessible. Machine
learning based methods [5–7] parameterize a binary classifier.
But they may be unstable if the signal type does not appear
in the training data set.

For non-cooperative spectrum monitoring, one representa-
tive choice of L(·) is information entropy [8], whose hypoth-
esis testing metric is

L(x) = −
L∑

ℓ=1

Pℓ(x) logPℓ(x) := TE(x), (6)

where Pℓ(x) is the normalized power spectrum density (PSD),
i.e.,

∑
ℓ Pℓ(x) = 1, represents the value of the ℓ-th frequency

bin of signal x. It can be estimated by many methods
such as the Welch method [8]. The intuition behind this

entropy detection method is discussed from information theory
view [8]. We will later illustrate that it can also be explained
from divergence metric. Note that WGN w should ideally
have a uniform constant PSD over different frequency bins.
Therefore its estimated normalized PSD Pℓ(w) is expected
to approximately satisfy Pℓ(w) ≈ 1/L. The following fact
shows that TE(x) is the KL divergence between Pℓ(x) and
1/L except a constant difference.

Fact 1. Define hypothesis testing metric TKL(x) as

TKL(x) =

L∑
ℓ=1

KL(Pℓ(x), 1/L), (7)

It is easy to obtain the following equation:

TKL(x) = −TE(x) + log(L), (8)

where KL(x, y) : R2
+ 7→ R+ is the generalized KL divergence

defined as KL(x, y) = x log(x/y) + y − x.

The statement in Fact 1 implies that TKL(x) shall achieve
the equivalent detection performance of TE(x) by adding
a constant to its detection threshold. Consequentially, the
aforementioned equivalence relation poses a question that
whether there is other divergence metric that can be used other
than the KL divergence. In the next section, we will introduce
a statistical divergence called β-divergence1, which has been
shown useful in various fields, e.g., neural signal analysis [11],
music signal processing [12], and low rank tensor fitting [13].

III. PROPOSED DETECTION METHOD

The summation form of TKL(x), i.e., equation (7), in
principle can be extended as the following mathematical form

T (x) =

L∑
ℓ=1

d(Pℓ(x), 1/L), (9)

where d(x, y) : R2
+ 7→ R+ is a properly defined function. The

β-divergence specifies d(x, y) as:

dβ(x, y) =


x
y − log(xy )− 1, β = 0,

x log(xy ) + y − x, β = 1,
xβ+(β−1)yβ−βxyβ−1

β(β−1) , o.w.,
(10)

where x, y are non-negative numbers. Note that dβ(x, y) =
0 if and only if x = y and it subsumes the Itakura-Saito
divergence (β = 0), the KL divergence (β = 1), and the
Euclidean distance (β = 2) as special cases. Fig. 1 shows the
function curves corresponding to different β values, where y
is fixed at 0.5. It can be seen that when x is equal to y,
the function value is 0, and different β values will lead to
different slopes on both sides of the curve. Consequentially,
β-divergence based hypothesis testing metric Tβ(x) can be
constructed as

Tβ(x) =

L∑
ℓ=1

dβ(Pℓ(x), 1/L) (11)

1Our motivation is simply from a metric selection perspective, theoretical
justification of the statistical property of using β-divergence would be an
interesting future direction.
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Fig. 1: Metric function curve when y = 0.5.

The intuition of our considered β-divergence is: if the
received signal x only contains noise, Pℓ(x) shall be close
to 1/L, leading to small value of Tβ(x); otherwise Tβ(x)

shall be large. Decision is simply made by Tβ(x)
H1

⋛
H0

λ,

where λ ≥ 0 is the detection threshold. Note that the choice
of λ depends on the desired false alarm rate PF . For a given
β value, if assuming Tβ(x) follows a Gaussian distribution
with the mean value µ and the variance σ2, the threshold λ is
determined by

λ = σQ−1(PF ) + µ (12)

where Q(x) = 1√
2π

∫ x

−∞ exp(−t2

2 )dt. However, such Gaus-
sian assumption may not hold, i.e., Tβ(w) follows an un-
modeled distribution. A practical way to select λ is empir-
ical validating PF from a branch of noise samples. Finally,
we remark that the detection performance of Tβ(x) has an
interesting invariant property (see Fact 2), which allows us to
arbitrary scale Pℓ(x) while the detection performance remains
the same.

Fact 2. Let η > 0 be a positive constant and define hypothesis
testing metric Tβ(x, η) as

Tβ(x, η) =

L∑
ℓ=1

dβ(ηPℓ(x), η/L) (13)

Then, we have Tβ(x, η) = ηβTβ(x).

The statement in Fact 2 implies that Tβ(x, η) can achieve
the same detection performance of Tβ(x) by multiplying a
constant ηβ to the detection threshold of Tβ(x). The detection
performance only depends on the choice of β, which will
be studied in Sec. IV-A. Also, simply specifying η = L
can avoid the calculation of the term xyβ−1, which reduces
the computational cost for calculating the hypothesis testing
metric especially when L is large.

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, we use simulations and real experiments
to evaluate the detection performance of the proposed β-
divergence detection (β-DD) method. The classical energy
detection (ED) method [1] and the power spectrum entropy
detection (PSED) method [8] are utilized as baseline methods.
To fairly compare the different hypothesis metrics, the two-
stage trick in PSED method is not used and the information
entropy is utilized as the metric. Different modulation types of
communication signals including BPSK, QPSK, 8PSK, PAM4,
CPFSK and 16QAM are considered in the evaluation. The
false alarm probability PF is fixed to be 0.01 and probability
of detection is compared. The symbol rate is Rb = 20 kHz
and the sampling rate is fs = 120 kHz. The during time of
each signal instance is 0.5s and the Welch method with 1024-
FFT points and commonly used 50% overlap is utilized to
estimated the PSD, which is further used in β-DD and PSED
methods for calculating the hypothesis metrics. The value of
η is set to be 0.5 and the total number of independent Monte
Carlo experiments is 5000.

A. Simulation Results

We first evaluate the impact parameter β. The histogram
of different hypothesis testing metrics under H0 and H1 are
compared in Fig. 2, where the SNR is fixed to be -16dB.
The modulated signals are generated using the MATLAB
Communications Toolbox. The smaller the overlapping area of
the received signal and noise histogram, the more beneficial
to detection. For different β values, i.e., β = −10,−2, 10, 16,
the size of the overlapping area are different. Particularly,
for PF = 0.01, the corresponding PDs are 1.10%, 77.70%,
99.60%, and 98.76%, respectively. Therefore, value of β needs
to be specified and in the rest part, for a fair comparison, we
do not exhaustively tuning β and simply fixed β = 6 for the
simulation and experiment detection.

Next, we change SNR from -20dB to -12dB with 2dB step
size. For different modulation signals, the proposed method
is compared to ED and PSED and the detection probability
curves are shown in the Fig. 3. It can be seen that the ED
method is the worst one, the the PSED method has similar
performance with β-DD method in high SNR cases, but worse
in low SNR cases. As PF changes, the results show that
the PD of low PF also decreases, since the threshold is
increased. For all considered modulation types, the β-DD
method achieves considerable detection gain at low SNR, and
its performance is the best.

B. Experiment Result

In order to evaluate the performance in practice, we collect
the measured noise and signal samples based on the NI USRP
X410 software radio platform, see Fig. 4. The transmitter
transmits the signal and the receiver receives it. As the received
signal is too strong, which is not conducive to performance
analysis, we put an attenuator with -30dB at the transmitter.
The launch gain is controlled within 6-16dB, the modulation
modes include 8PSK, 16QAM, BPSK and QPSK. The false
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(a) β = −10 (b) β = −2 (c) β = 10 (d) β = 16

Fig. 2: Examples of histograms of the received signal and noise under different β. (QPSK signal with -16 dB SNR).

(a) QPSK (b) 16QAM (c) PAM4 (d) CPFSK

Fig. 3: Comparison of probability of detection of different methods.

alarm probability PF is 0.01, the symbol rate Rb is 20 kHz,
the sampling rate fs is 241kHz, and the number samples of
each single instance is 60000. Each experiment is repeated for
600 times. Since the measured data samples contains external

Fig. 4: Illustration of experimental equipment.

interference, the collected data has many spikes, and the signal
level fluctuates greatly under the condition of the same gain
and SNR, the data processing method mentioned in the third
part is not ideal. In order to eliminate the influence of large
fluctuation of measured data, we normalize the obtained power
spectrum and do the detection.

Fig. 5 shows that the performance of ED method is poor and
the signal can hardly be detected. The detection performance
of PSED method is not good under the condition of low gain

(SNR), while β-DD method is improved under the same gain
and has the best performance in most cases.

(a) 8PSK. (b) 16QAM.

(c) BPSK. (d) QPSK.

Fig. 5: Detection performance on experimental data.

V. CONCLUSIONS

In this paper, we have revisited information entropy based
detection method and shown that it can be regarded as a
KL divergence based detection method. To understand the
potential performance improvement of using other metrics,
β-divergence has been introduced. Both simulation and real
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experiments have demonstrated the superiority of our proposed
β-divergence detector.
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