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Abstract—The direction of arrival (DOA) estimation of the
signal is an important task in radio signal positioning. Various
methods have been investigated to cope with the DOA task.
However, since the imperfect interference factors are often
present in practical antenna arrays, the performance of DOA
estimation is often significantly degraded. Besides, few methods
deal with the DOA estimation for signals of multiple frequencies.
In this paper, we consider the problem of two-dimensional DOA
estimation in the presence of imperfect factors, and propose a
novel approach where the convolutional attention network is used
for DOA estimation. The frequency information is introduced
as a token added to the network, which improves the network
robustness while taking into account the case of the signal of
multiple frequencies. Besides, we extend the mean square error
(MSE) to the design of a new loss function for training to improve
the accuracy of the model. The advantages of the proposed
DOA estimation scheme are demonstrated through numerical
experiments.

Index Terms—DOA estimation, convolutional neural network,
attention mechanism, deep learning, imperfect effect

I. INTRODUCTION

Direction-of-arrival (DOA) estimation of signals in the radio
direction finding problem has been studied for a long time
[1]–[5]. It is a fundamental problem in the fields of radar
sensing, wireless communication [6], [7], and has a wide
range of applications in military, public security, aviation,
navigation, surface transportation, disaster relief, etc. The
core of DOA estimation is the mapping relationship of the
parameters hidden in the received signal with the DOA [8], [9].
These parameters can be interpreted as the responses which
are very relevant to the DOA, and they can be measured
from the received signal. The phase difference [10], amplitude
difference [11], Doppler effect [12], array subspace [13], and
beam formed signal power [14] can be the responses.

A number of traditional algorithms have been investigated
for DOA estimation. Two representative algorithms are the
multiple-signal classification (MUSIC) algorithm [15] and
the estimation of signal parameters via rotational invariance
technique (ESPRIT) method [16]. They have been the basis
for several other methods. For example, a tree-structured
frequency-space-frequency (FSF) MUSIC-based algorithm is

proposed in [17], the parameter estimation and filtering pro-
cesses are combined to joint estimate the DOA and frequency.
Aiming to the direction of departure (DOD) and DOA es-
timation problem of multiple-input multiple-output (MIMO)
radio, the work [18] presented a reduced-dimensional MUSIC
(RD-MUSIC) algorithm with a lower computational cost. The
ESPRIT method and Root-MUSIC method were used in [19]
to estimate the DOD and DOA of MIMO radio, respectively.
A novel compressed MUSIC (C-MUSIC) spatial spectrum
was studied in [20] involving a limited spectral search as
compared to the MUSIC which requires a much larger search
space. To perform DOA estimation of MIMO radar with
imperfect waveforms, the RD-MUSIC algorithm with the
noiseless cross-covariance matrix was proposed in [21]. The
work [22] proposed a parallel model for DOA estimation of
colocated MIMO radar with imperfect waveforms. However,
these algorithms have a limited ability to fit interference factors
in imperfect condition, and the optimization of the received
signal measurement model becomes complicated when multi-
ple factors are considered.

Benefit from the excellent feature extraction and efficient
modeling capability of neural networks, many works use deep
learning techniques to overcome the effects of interference
factors. In [23], an end-to-end deep neural network (DNN)
was proposed for channel estimation and DOA estimation of
a massive MIMO system. In [24], a DOA estimation method
based on convolutional neural network (CNN) is given in a
low signal-to-noise ratio (SNR). In [25], an iterative sparse
signal recovery algorithm was unfolded as a deep network to
estimate DOA in the presence of array imperfections. In [26],
multiple deep CNNs were presented, in which the MUSIC
spectrum of the received signal can be obtained from the CNN
of the corresponding angular subregion. In [27], the Long
Short-Term Memory (LSTM) network was used to estimate
the DOA, where the network input is the correlation vector
of signals while the network output is the one-hot encoding
corresponding to the DOA. Besides, the works [28]–[30] have
also been proposed for complex receiving signal systems with
the mutual coupling effect, inconsistent phases and gains, po-
sitions perturbations, etc. However, most of the deep learning
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based methods nowadays are for the one-dimensional case,
while the two-dimensional direction finding is more common
in practice and has been widely used in satellite or airborne
payloads [9]. Besides, these methods can not handle the case of
the signal of multiple frequencies. Constructing a network for
each frequency is time-consuming and irrational, which would
simply ignore the inner relationship between the samples for
different frequencies. Therefore, it is desired to consider the
inner relationship and design a generic network framework to
satisfy the different frequency cases.

To address these deficiencies, [9] proposed a DNN-based
two-dimensional direction finding approach, in which the
whole DOA estimation process is divided into two stages:
classification and regression. The frequency information is
used to partition multi-group networks, and the estimated
DOA is obtained by the the corresponding regression network
according to the classification result. However, to enjoy higher
accuracy by increasing the number of frequency and angle
partitions, more classification and regression networks are
required. It will unavoidably enlarge the network structure and
increase the training overhead. In addition, the frequency of
the signal is an estimated value, and the deviation in frequency
may lead to incorrect selection of sub-networks, which has a
significant impact on the accuracy of the network.

Inspired by the DNN-based approach [9], we focus on
developing a convolutional attention network based approach.
It is used for the two-dimensional DOA estimation problem of
receiving antenna arrays with interference factors. Unlike [9],
we do not use frequency partition sub-networks to achieve
DOA estimation for multiple frequencies of signal, so the
network architecture is significantly simpler. In [9], the fre-
quency is copied as a long vector and added into the input,
which increases the complexity and uncertainty of the input
data. In our approach, this is avoided by a frequency token.
In summary, the contribution of this paper are as follows:

• We propose a DOA estimation approach based on con-
volutional attention network.

• We design a new input form, where the frequency infor-
mation is added to the network as a token and improves
the robustness.

• We propose a loss function for the network training by
extending the mean square error (MSE) loss function.

• Extensive experiments are conducted to determine the op-
timal network architecture and to verify the effectiveness
of our proposed method.

II. SIGNAL MODEL

For a single far-field signal, we can use the following
expression to represent its form at time t

s(t) = uej(ωt+φ), (1)

where ω = 2πf = 2πc/λ in which f is the signal frequency,
c is the speed of propagation of electromagnetic waves, and
λ is the wavelength. u and φ are the amplitude and phase of
the signal, respectively. For convenience, we assume that the
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Fig. 1. Planar coordinate system of one-dimensional direction finding.
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Fig. 2. Spatial coordinate system of two-dimensional direction finding.

amplitude and phase of the same far-field signal do not change
with time t. Then the far-field signal with delay τ is

s(t− τ) = uej(ω(t−τ)+φ)

= uej(ωt+φ)e−jωτ = s(t)e−jωτ .
(2)

According to the above mathematical modeling of the
original far-field signal, it is easy to know that the signal
received by the i-th antenna is

xi(t) = s(t− τi) + ni(t) = e−jωτis(t) + ni(t), (3)

where i = 0, 1, · · · , N − 1 and N is the number of elements
in the antenna array, τi denotes the delay of the original signal
imping onto the i-th antenna, which is relative to the reference
antenna (i.e., the origin of the coordinate system), and ni(t) is
the noise at time t which is usually considered to be Gaussian
white noise. By expanding (3) into the vector form, we can
obtain the received signal mathematical model of the entire
antenna array

x(t) = as(t) + n(t), (4)

where x(t) = [x0(t), · · · , xN−1(t)]
T ∈ CN and n(t) =

[n0(t), · · · , nN−1(t)]
T ∈ CN . The steering vector is

a = [1, e−jωτ1 , · · · , e−jωτN−1 ]T . (5)

In the one-dimensional direction finding problem, the DOA
estimation of signal is performed in a planar coordinate
system. As shown in Fig. 1, a uniform linear array (ULA)
with N antenna elements (A0 ∼ AN−1) is distributed on the
x-axis with their spacing being d, θ is the DOA of the signal.
With the antenna at the origin of the coordinate system as
the reference, the wave path difference of the signal imping
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onto each antenna is di sin θ, where di is the length of the
baseline between the i-th and the reference antenna. Therefore,
the delay of the i-th antenna is

τi =
di sin θ

c
. (6)

It is not difficult to find that the wave path difference is
actually the projection length of the baseline vector on the
signal direction vector. The spatial coordinate system of two-
dimensional direction finding is shown in Fig. 2, with the
DOA angle θ = [α, β]T , where α and β are the azimuth and
elevation angles, respectively. The unit-length signal direction
vector can be defined as

r = [cosα cosβ, sinα cosβ, sinβ]T . (7)

Suppose the position coordinate of the reference antenna
is the origin [0, 0, 0]T and the position of the i-th antenna is
at coordinate [xi, yi, zi]

T , then the baseline vector is di =
[xi, yi, zi]

T and the delay τi can be calculated by

τi =
dTi · r
c

. (8)

Based on (8), the phase difference of the i-th antenna with
respect to the reference antenna is

ϕi = ωτi = 2πfτi = 2π
f

c
dTi · r. (9)

There are usually various imperfect factors that usually exist
in practical arrays, such as mutual coupling and receiving
channel inconsistency [9]. All of these imperfect effects can
bias the response model of (9), which will be reflected in
the steering vector a. Therefore, the problem we need to
solve is to estimate the DOA with the help of received signal
x(t) = a(θ, e)s(t) + n(t) from the antenna array under the
influence of various imperfect factors, where a(θ, e) denotes
the steering vector with the imperfect effect e when the DOA
angle is θ. In this paper, the mutual coupling effect and
inconsistent gains/phases effect are considered

x(t) = BGa(θ)s(t) + n(t), (10)

where B ∈ CN×N is a symmetric matrix whose diagonal
elements are all one and denote the mutual coupling effect.
The diagonal matrix G ∈ CN×N represents the inconsistent
gains/phases effect with the diagonal element Gi = gie

jψi ,
where gi and ψi are inconsistent gain and phase of the i-th
antenna with respect to the reference antenna, respectively.

III. PROPOSED APPROACH

A. The Network Architecture

In this paper, we use the convolutional attention network to
realize DOA estimation, for convenience we named it CANN,
and its architecture is shown in Fig. 3. The network consists of
several convolutional modules (gray part) connected with each
other to form the main structure. The attention mechanism
module (blue part) is followed by these convolutional modules.
The regression module (green part) is composed of two fully
connected layers and a nonlinear layer located between them.

16 filters,  1 3, 1D Convolution
+ Batch normalization + ReLU

64 filters, 1 3, 1D Convolution
+ Batch normalization + ReLU

64 filters, 1 3, 1D Convolution
+ Batch normalization + ReLU

128 filters, 1 3, 1D Convolution
+ Batch normalization + ReLU

Spatial Attention

Channel Attention

128 size, Fully Connection

ReLU

4 size, Fully Connection

MB×MC×MF

MB×128×MF

MB×128×MF

MB×(128MF

MB×4

×

×

×

×

F
latten+1)

Fig. 3. The architecture of the convolutional attention network.

Among them, each convolutional module is composed of a
one-dimensional convolutional layer, a batch normalization
layer and a nonlinear layer. Moreover, the attention mechanism
module is divided into a spatial attention module and a channel
attention module.

In convolutional modules, the first convolutional module is
represented as an input layer whose number of filters should
not be set too large for the case of oversampling of the feature
map, so 16 filters are used in this module. The parameters of
the convolutional layers of the other modules between the first
and the last convolutional module are set the same. For the
considered case of a 5 antenna receiving array, we heuristically
set the number of filters for these convolutional layers to be 4
times that of the first convolutional module, i.e. 64 (because
there is a reference antenna). And the number of filters of the
last convolutional module is 128. For all of them, considering
the length of the input data feature the convolutional kernel
size is 1 × 3, and the padding and stride are set to keep the
feature length of convolution output consistent with the input.
Moreover, the ReLU function is used as a nonlinear layer.

Then, we use the convolutional block attention module
(CBAM) [31] to compute the attention weights in the fea-
ture dimension and the channel dimension successively. The
parameters of the convolutional layer in the spatial attention
module are similar to those of the convolutional module, where
the convolution kernel size is 1 × 3 and the padding is set
to keep the size of output. While in the channel attention
module, the length of the feature dimension is replaced by the
number of channels due to the global maximum and global
average pooling operations, so the shared multi-layer percep-
tron (MLP) is replaced by a one-dimension convolutional layer
with a kernel size of 1× 1.

Finally, as the regression module used by the network for
DOA estimation, the output of the two fully connected layers
are 128 and 4, which correspond to the number of filters in the
last convolutional module and the number of sine and cosine
values of the DOA angle. And the nonlinear layer is ReLU.
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It is noted that after the flatten operation we add a token ξ to
the data and then input it into the regression module. We use
I ∈ RMB×MC×MF to denote the input data, then the whole
network computation process can be expressed as

O = F6 (ξ, F5 (F4 (F3 (F2 (· · ·F2 (F1 (I)) · · · ))))) , (11)

where MB ,MC ,MF denote the batch size, the number
of channel and the feature length of input data, respec-
tively. F1, F2, F3 denote the convolutional modules, F4 and
F5 refer to the spatial and channel attention module, then
F6 corresponds to the regression module. We use O =
[sinα, cosα, sinβ, cosβ]

T ∈ R4 as the output of this network,
which is the same as in [9] and has been proven to be closed
to optimal.

B. Model Input

The input form of the current deep learning based DOA
estimation methods can be broadly divided into two categories.
On one hand, the raw sampled signal data from the antenna
array could be used directly as the input, and on the other
hand, the covariance matrix of the received signal could
be used. There is a significant shortcoming for the former,
i.e., the number of sampling points can have an impact on
the model. Specifically, a small number of samples means
limited information contained and would cause a inaccurate
estimation result, while a large number makes the model input
complicated and increases the training cost. In contrast, the
covariance matrix contains information about the sampled data
while reducing the input dimension, which achieves a balanced
effect.

In order to reduce the network input size we only use the
upper diagonal elements of the covariance matrix (12) and
construct a vector form (13), which contains information about
the interrelationship among the individual antennas

C =
1

M

M−1∑
i=0

x(ti)x
H(ti), (12)

Cup = [C1,2, C1,3, C2,3, · · · , C1,N , · · · , CN−1,N ]T , (13)

where M is the number of sample points, and Ci,j denotes the
element of covariance matrix C in row i column j. Therefore,
the input form of our proposed network model is as follows

I = [real{Cup}, imag{Cup}]T ∈ R2×N(N−1)/2, (14)

where real{·} and imag{·} denote the real and imaginary
parts of a complex value, respectively.

Furthermore, as mentioned in III-A, in addition to the input
at the beginning of the network, a token is added as an input
to the regression module after the flatten operation. In the
proposed method, the token is set to the frequency of the
received signal ξ = f in (11), which is, in practice, a feature
estimated by a certain method. The frequency information used
before the regression module is due to two considerations.
First, if feed in at the beginning of the network, it is usually
required to repeat the frequency to align with the dimension
of Cup (e.g., [9]). However, as an estimation feature, the

repetition increases the complexity and uncertainty of the input
information. Second, the various convolution operations of the
network play the role of feature extraction, and the frequency
is also a feature estimated from the received signal, so it is
reasonable to connect it with the output of these convolution
operations for input into the regression module.

C. Loss Function

Based on the network model output O, an intuitive loss
function is MSE. The process of DOA estimation with a
neural network is solving a regression problem for which the
MSE loss function is very common. In intelligent direction
finding methods based on neural network model [6], most of
the models are trained with the MSE loss function. In this
proposed network, the commonly used MSE loss function is
extended to conform to the output of the network, which is
named ExMSE

ExMSE = µMSE+ νEx, (15a)

MSE =
1

MB

MB−1∑
i=0

(
Ôi −Oi

)T (
Ôi −Oi

)
, (15b)

Ex =
1

MB

MB−1∑
i=0

[
(
1− ( ˆsinαi)

2 − ( ˆcosαi)
2
)2

+(
1− ( ˆsinβi)

2 − ( ˆcosβi)
2
)2

],

(15c)

where Ô =
[

ˆsinα, ˆcosα, ˆsinβ, ˆcosβ
]T

denotes the prediction
result of the network. Both µ and ν are weighting coefficients
that can be found by cross-validating to obtain better perfor-
mance. For simplicity, we set µ = ν = 1 in our experiments.

It is intuitive to add this extension term Ex to the loss
function for network models with trigonometric values as
output. Each of the sine and cosine values are estimated
independently. We want to ensure that they are conform this
mathematical constraint, so this extension term need to be
added to the loss function as a penalty. The extension term can
improve the accuracy of the network, which will be verified
in subsequent experiments.

IV. EXPERIMENTS

A. Dataset

In this paper, we consider the DOA estimation problem
in the two-dimensional direction finding. A surface array
containing five antennas is used to receive the signal. The
frequency range of the signal is f ∈ [300, 350]MHz with step
length 5MHz, the wave speed is c = 3 × 108 m/s, and n(t)
is 0-mean Gaussian white noise. The mutual coupling effect
and the inconsistency effect in (10) are the same as [9]. It is
noted that we set the antenna elements at the same position as
[9], but we use the baseline between the i-th and the reference
antenna, where the d0 = [0, 0, 0]T is the baseline vector of the
reference antenna.

Based on the above settings, we generate the signal data
in ideal and complex receiving systems according to (4) and
(10). If conditions permit, we recommend collecting samples
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in a microwave unreflected chamber or other controlled en-
vironments. In the simulation of the training samples, the
azimuth and elevation angles of the signals are α ∈ [0◦, 358◦]
and β ∈ [30◦, 88◦] with step length 2◦, respectively, and a
perturbation within (0◦, 2◦) is added to each angle. The signal
of each set of f , α and β is repeatedly sampled 5 times with
a sampling frequency of 1000, and is randomly discarded
with 40% possibility. The validation samples are similar to
training, but the step length is changed to 10◦ in α, repeated
10 times and without randomly discarding. The test samples
are all in complex receiving system, in which α is in the range
[2◦, 180◦] with step length 5◦, β is in the range [30◦, 88◦]
with step length 2◦, and repeat sampling for 5 times without
randomly discarding. It is noted that the SNR of the training
and validation set is 10 and is in the range of [0, 30] with step
length 5 in the test set.

B. Evaluation Metrics

To measure the performance of the proposed DOA estima-
tion method, we calculate the direction vector of the signal
with the help of the trigonometric values of the network output.
The angle between the estimated direction vector and the real
direction vector of the signal is used as the evaluation metric
[9], that is

r̂ =
[

ˆcosα ˆcosβ, ˆsinα ˆcosβ, ˆsinβ
]T
, (16a)

error = arccos
r̂Tr

∥r̂∥∥r∥
, (16b)

where r̂ is the estimated direction vector with bias, so ∥r̂∥ ≈
1, while r is a unit direction vector and ∥r∥ = 1.

A very straightforward idea in the DOA estimation problem
is to use the difference between the estimated angle and
the real angle as the evaluation metric. However, in the
method where the trigonometric values are used as the output,
this consideration can lead to bias in the evaluation metric.
Obviously, sin 1◦ and sin 359◦ are close enough that the error
is not very large when the evaluation metric is calculated using
the direction vector. But converting them to angle values, the
error between 1◦ and 359◦ will be unacceptable. Therefore, it
is a reasonable and effective idea to use (16b) as the evaluation
metric.

C. Experimental Results

In this section, we will demonstrate the DOA estimation
performance of the proposed approach on signals containing
interference factors through a series of experiments.

First, in the CANN, an important hyperparameter must be
considered to achieve better DOA estimation. In section III-A
we mentioned that there are several identical convolutional
modules between the first and the last convolutional module of
CANN, and different numbers of these middle convolutional
modules can have different effects on the feature extraction
ability of the network. In Fig. 4, we show the DOA estimation
performance with different numbers of middle convolutional
modules.
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Fig. 4. The DOA estimation performance with different numbers of middle
convolutional modules.
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Fig. 5. The DOA estimation performance with different influencing factors.

As shown in this figure, the direction finding error decreases
and then increases with the increase of the number of inter-
mediate convolution modules. When the number is small, the
network structure is relatively simple and has limited ability to
fit the data. The network will be over-fitted and the complexity
becomes larger when the number increases. Obviously, when
the number of the middle convolutional modules is 2, a better
trade-off between DOA estimation performance and network
complexity is achieved. So added with the first and last one,
we have a total of 4 convolutional modules for CANN.

Then, we compare the influence of the loss function ExMSE
and the token in the regression module on the network for
DOA estimation. The results are shown in Fig 5, where the
symbols +token and −token means to use and not to use the
token in the regression module, respectively, and the +ExMSE
and +MSE indicate which loss function is used to train the
network model.

In Fig 5, it is easy to find that the CANN, which combines
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the additional token and trained with the ExMSE loss function,
has a better DOA estimation performance. Oppositely, the
network without token and trained with MSE has worse
performance. Looking only at the error curves of the networks
trained with different loss functions, it can be found that the
trend of these curves of the same loss function is similar,
and the ExMSE-trained network is more sensitive to the
change of SNR in the low SNR case. Consistent with what
we stated in III-C, the ExMSE has a better direction finding
accuracy than the MSE loss function. When using ExMSE
to train the network, the Ex term in (15c) makes the output
trigonometric function values more mathematically correct,
and improves the fitting ability of the network to achieve
higher accuracy. Overall, the networks with the token have
better DOA estimation performance.

Next, we compare our method with other methods, i.e., the
MUSIC method [15] and the DNN-based method [9]. Both two
methods are suitable for the two-dimensional DOA estimation
problem. We re-implemented these two methods and evaluate
them on the previously mentioned dataset. The comparison
results of them and our proposed method are arranged in
Table I.

As shown in the table, our proposed method outperforms
the baseline methods for DOA estimation results for signal
data with different SNR. Although the DNN-based method is
slightly worse than our proposed method in direction finding
error, the 2.4◦ ∼ 2.5◦ of error is acceptable. However, the
MUSIC algorithm cannot model the interference factors in the
input signal data as better as the network model, which leads
to worse performance, and to achieve higher accuracy, the grid
needs to be more refined and the computational overhead is
significantly increased.

The number of network modules of the DNN-based method
and ours is shown in Table II, where Nf and Nz denote
the number of classification and regression parts, Nm denotes
the number of middle convolutional modules. In the DNN-
based method, the entire network is divided into a number of
classification and regression networks based on partitioning.
And a classification part contains 2 convolutional modules and
2 fully connected layers, while a regression network contains
4 convolutional modules and 2 fully connected layers. Because
of the existence of partition, the original single network struc-
ture is divided into multiple parts which undoubtedly makes
the network structure huger and requires more training as well
as deployment costs. From the practical application, we need
to consider the resource issue, and the complex network may
not be suitable for use in miniaturized devices with limited
resources. So, both in terms of DOA estimation accuracy and
complexity of the model, the method we proposed is better
than the DNN-based method.

Finally, we add certain perturbations to the frequency in
the test data, which is a simulation of the frequency es-
timation in practice, to test the robustness of the network
when adding frequency as the token to the regression module.
The experimental results are shown in Table III, where the
symbol ±1MHz means the perturbation is between −1MHz

TABLE I
COMPARISON RESULTS WITH MUSIC AND DNN-BASED METHODS

Direction Finding Error In Different SNR (deg)

Method 0dB 5dB 10dB 15dB 20dB 25dB 30dB

MUSIC [15] 27.572 27.609 27.621 27.603 27.605 27.598 27.602
DNN-Based [9] 2.496 2.423 2.411 2.407 2.406 2.407 2.406

Ours 1.513 1.218 1.131 1.105 1.098 1.095 1.094

TABLE II
COMPARISON RESULTS WITH DNN-BASED METHODS IN TERMS OF THE

NUMBER OF DIFFERENT NETWORK MODULES

Method Conv FC CBAM

DNN-Based [9] 2Nf + 4NfNz 2Nf + 2NfNz -
Ours 2 +Nm 2 1

TABLE III
COMPARISON RESULTS WITH DIFFERENT FREQUENCY PERTURBATION

Frequency Direction Finding Error In Different SNR (deg)

Perturbation 0dB 5dB 10dB 15dB 20dB 25dB 30dB

±0MHz 1.513 1.218 1.131 1.105 1.098 1.095 1.094
±1MHz 1.512 1.185 1.273 1.279 1.095 1.167 1.082
±2MHz 1.719 1.179 1.002 1.123 0.949 1.016 1.313
±3MHz 1.541 1.404 0.952 1.006 1.397 1.091 1.011

and +1MHz. Obviously, the variation of the direction finding
error is small for different degrees of frequency perturbation,
which is a good demonstration of the robustness of our
proposed approach. On the other hand, the frequency partition
in the DNN-based method to determine the sub-network may
lead to bias in the presence of perturbations, while in our
approach this phenomenon can be avoided by the frequency
token. In a sense, the token increases the resistance of the
network to perturbation.

V. CONCLUSION

In this paper, we consider the problem of two-dimensional
DOA estimation in imperfect condition. A mathematically
model of the received signal in the antenna array with the
mutual coupling effect and the inconsistent effect has been
formulated. Then a convolutional neural network with at-
tention mechanism has been used to address this problem.
The ExMSE loss function has been used for the network
training. Moreover, the input data of the network has been
redesigned, in which the frequency information is passed
to the regression module as a token. While avoiding the
complexity and uncertainty of the input data brought by the
copy operation, it increases the robustness of the network to
frequency perturbation. The simulation results has shown the
advantages of our proposed two-dimensional DOA estimation
scheme.
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