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Abstract—In increasingly complex electromagnetic environ-
ments, distributed systems are crucial for passive target local-
ization. These systems, consisting of spatially dispersed sensing
nodes, collaboratively enhance the localization of target signals.
Particularly in blind localization tasks within low signal-to-noise
ratio (SNR) settings, distributed passive localization offers im-
proved positioning performance. Traditional passive localization
methods typically follow a two-step process: initially extracting
parameters, such as the direction of arrivals (DOA), from raw
data, followed by localizing the target. This approach often
requires a high SNR. In contrast, Direct Position Determination
(DPD) methods directly leverage all the received raw data, thus
overcoming the constraints of the two-step process. However,
DPD methods involve a time-consuming grid search within
the area of interest. To address this challenge, we propose
a radiation source localization method that utilizes random
sampling. This method capitalizes on the low-rank properties
of the grid search matrix used in DPD methods. By integrating
random sampling with low-rank matrix completion algorithms,
our approach efficiently localizes the radiation source. Simulation
results demonstrate that this random sampling-based method
significantly reduces computational demands while preserving
high localization accuracy.

Index Terms—Direct Position Determination (DPD), random
sampling, low-rank matrix completion

I. INTRODUCTION

In recent decades, distributed passive localization has be-
come increasingly prevalent in both military and civilian
sectors. In civilian applications, this technology is employed
for radio supervision, arrest support, and search and rescue
operations. In military contexts, locating radiation sources is
crucial for tasks such as troop deployment, signal separa-
tion, jamming guidance, and navigational aid during attacks.
Commonly used distributed passive localization methods are
categorized into indirect localization algorithms and Direct

This work was supported in part by the National Nature Science Foun-
dation of China (NSFC) under Grant 62101350, Grant 62201362, and
in part by the Shenzhen Science and Technology Program (Grant No.
RCBS20221008093126071).

Shenzhen, China
wpu@sribd.cn

National Key Laboratory of
Electromagnetic Space Security  Electromagnetic Space Security

Shenzhen, China
rui.zhou@sribd.cn

Junkun Yan
National Key Laboratory of Radar Signal Processing
Hangzhou Institute of Technology, Xidian University
Xi’an & Hangzhou, China
jkyan@xidian.edu.cn

Position Determination (DPD) algorithms, often described as
two-step and one-step localization approaches, respectively.

Two-step localization methods are generally suboptimal
because they fail to ensure that all extracted parameters are
consistent with the same radiation source location. Com-
mon two-step localization techniques include received signal
strength (RSS) [1], angle of arrival (AOA) [2], time difference
of arrival (TDOA), frequency difference of arrival (FDOA),
and systems that integrate multiple observational methods [3].
In practical scenarios, the location and velocity data of sensing
nodes are often imprecise, particularly when the nodes are
mounted on platforms like unmanned aerial vehicles, where
random errors are inevitable. Localization based on TDOA and
FDOA is particularly susceptible to inaccuracies in the position
and velocity of the sensing nodes. Consequently, localization
algorithms must incorporate the statistical data of these errors
to improve the accuracy of radiation source localization.

In scenarios with low signal-to-noise ratio (SNR), the ef-
fectiveness of traditional two-step localization methods signif-
icantly diminishes. To overcome this limitation, DPD methods
have been developed, which estimates the source location
directly from the received signals, bypassing the need for
intermediate parameter estimation [4]-[10]. DPD methods
generally outperform the traditional two-step approaches by
modeling the signal observations from all distributed sensors
as functions of the same source. These methods can directly
estimate the location of a radiation source from the received
signals, eliminating the need for a preliminary parameter
extraction step. A prevalent technique in DPD for stationary
sources involves utilizing signals that encapsulate time differ-
ence and frequency difference information. DPD techniques
that rely on TDOA and FDOA typically assume constant
delays and Doppler shifts over the observation period. Weiss
et al. conducted extensive research on DPD for narrowband
radiation sources [11]. They formulated methods to estimate
the radiation source location using the least squares approach,
effective under both known and unknown signal conditions.
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However, the primary limitation of DPD methods is that their
accuracy hinges on the grid width used to partition the search
area. In cases where the search space is large and the grid
width is small, the computational load can become significant,
even in two-dimensional searches.

To overcome the computational challenges of grid searches,
this paper introduces a novel method that combines random
sampling with low-rank matrix completion (LRMC) algo-
rithms [12] [13] [14]. This approach significantly reduces
computational load while maintaining localization accuracy
in complex electromagnetic environments. It enhances the
efficiency of Directional Pursuit Detection (DPD) methods,
proving especially effective in both military and civilian
applications of distributed systems. Numerical experiments
confirm that this innovative strategy not only cuts down on
computational demands but also maintains high localization
accuracy.

II. SIGNAL MODEL AND DPD

A. Signal Model

Consider a scenario where a stationary radiation source is
located in a two-dimensional space, with its position denoted
by P = (o, yo). Surrounding this source are N stationary
sensing nodes positioned at spatial coordinates P, ; = (x;, y;)
fori=1,...,N. The time delay 7; from the radiation source
to the i-th sensing node can be mathematically described as:

Ps - Pri
rz:in ’”2, i=1,...,N,
¢
where c represents the speed of light, and || - || signifies the

Euclidean distance between the radiation source and the i-th
sensing node. To facilitate the discussion, it is assumed that
the clock frequencies of the sensing nodes are synchronized.
Additionally, the delays experienced during the observation
period are sufficiently short, allowing them to be considered
constant throughout the duration of the observation.

During the observation time slot, the received signal model
used to capture the radiation source signal is defined as
follows:

Yi(t) = his(t — 7;) + ny(t).

In this model, y;(t) represents the signal received by the
i-th sensing node. The parameter h; denotes the channel
characteristic from the radiation source to the i-th node, which
is assumed to follow a Rayleigh distribution. The term s(t)
corresponds to the radiation source signal, while 7; indicates
the delay from the radiation source to the ¢-th sensing node.
Additionally, n,;(¢) is the additive white Gaussian noise at
the ¢-th node, which follows a complex Gaussian distribution.
Each node transmits observation data to the fusion center,
where the received data is asynchronous. The asynchronous
data received at the fusion center is denoted by Y € CV*7,
where T' represents the number of observation samples per
sensing node, N denotes the total number of sensing nodes.

B. DPD

The workflow of our considered Direct Position Determi-
nation (DPD) method is outlined as follows:

1) Grid Division: Segment the sensing area into grids.

2) Data Compensation: At each grid point, the fusion
center adjusts the received data for time delays to derive
the compensated data.

3) Statistical Computation: Employ various localization
methods to analyze the compensated data and compute
the relevant statistics.

4) Iteration: Repeat steps 2 and 3 for each grid point until
the entire area has been covered.

5) Source Localization: Identify the radiation source’s
location at the grid point where the computed statistics
reach a peak value.

Time delays can be compensated for, such that the data
received by each sensing node is synchronized and free from
any discrepancies in delay. The compensated data model is
mathematically represented as follows:

Y = Hs + N,

where y(t) is a vector representing the signals received at time
t from all N sensing nodes, and it ranges over t = 1,...,7T,
where T' denotes the total number of observation time points.
The matrix Y compiles these vectors into a N x T' matrix,
encapsulating the data received over all time points. The matrix
H characterizes the channel responses of each of the N nodes
and remains constant across different time points. The vector s,
of dimension 1 x T, contains the source signals sampled across
these time points. Lastly, IN is a N x 7" matrix representing
the noise at each node and each time point, assumed to be
additive white Gaussian noise.

Our considered DPD method employs the generalized like-
lihood ratio test (GLRT) to address uncertainties regarding the
presence of a radiation source signal. Depending on whether
hypothesis 7H; (signal presence) or Hy (signal absence)
is assumed, the unknown parameters differ. The maximum
likelihood (ML) estimations of these parameters under each
hypothesis are given by:

Ry = argmax p(Y|R, Ho),
ReBg

R, = argmax p(Y|R, H1),
ReO®;

where ®( and ©; represent the sets of unknown parameters
under the hypotheses H, and H;, respectively. Specifically,
O := {Diag(o)|o > 0} and ©; := {HH! + Diag(o)|o >
0} characterize the parameters under each hypothesis. Note
that in this context, both H and o are auxiliary variables
and remain unknown. The generalized GLRT test statistic is

formulated as:
p(Y|R,H,1)

§GIR = 5o -

p (Y|R7 HO)
For the estimation of the received signal’s covariance matrix,
we extend the algorithm described in [15]. This refinement
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allows for more accurate assessments under varying hypoth-
esis scenarios. The DPD process ultimately determines the
positions of the signal source at the grid points exhibiting the
maximum test statistic, essentially pinpointing the peak of the
test statistic map.

III. THE EFFICIENT DPD BASED ON RANDOM SAMPLING.

Analyzing all grid points and computing the associated test
statistics is typically time-consuming. Therefore, in this paper,
we propose using the matrix completion approach to estimate
the test statistics map by completing the partially observed
map M.

A. Problem Formulation

Matrix Completion (MC) is a pivotal technique in computer
science that utilizes the sparsity of data—significantly zero
elements in certain domains—to effectively process informa-
tion. Specifically, in matrix completion, sparsity is observed
in the singular value vectors of the original matrix. The
main goal of MC is to reconstruct a complete, low-rank
matrix from partially observed data by filling in the missing
elements. The objective is to find a low-rank matrix that best
matches the available partial observations, a problem which is
mathematically formulated as follows:

rank(X)
S.t. XL] = MU s

min {
V(i,5) € Q, %
where ) denote the set of indices corresponding to observed
elements. The constraint ensures that the constructed low-rank
matrix X matches the known elements of matrix M precisely.

Minimizing the rank of a matrix is an NP-hard problem;
therefore, approximation algorithms are frequently employed
[12]. In the realm of sparse optimization, the [y norm, rep-
resenting the count of non-zero singular values in a matrix,
is typically substituted with the /; norm. Expanding on this
approach, the Iy norm is further replaced by the sum of all
singular values—known as the nuclear norm of the matrix X,
denoted as ||X]|, = >_ 0;(X). Consequently, Problem (1) can

be reformulated as folllows:

min || X,
o 2)
S.t. XU = Mija V(Z,j) S Q,
Where || - ||« represents the nuclear norm of a matrix, which

is the sum of its singular values. {2 denotes the set of indices
for observed samples, X represents the recovered matrix, and
M is a matrix containing partial observations.

Problem (2) constitutes a convex optimization challenge that
can be reformulated as a semidefinite programming problem.
For a specified parameter ;1 > 0, the problem adopts a
quadratic penalty function form, expressed as:

1
plIX + 5 > (Xij—My)° 3)
(i,5)€Q

min
XeRm Xn

This formulation effectively balances the minimization of
the nuclear norm and the fidelity to the observed entries of

matrix M. Moreover, alternative methods to singular value
decomposition are available in matrix factorization. These
approaches employ two low-rank matrices to approximate the
target matrix, presupposing that the rank of the original matrix
is predetermined. The objective is expressed as:

I(UVT)q — Malf?

min
UER™X",VER™*"
This formulation aims to minimize the squared Frobenius
norm of the difference between the observed entries of the
target matrix Mg and the product of the approximating
matrices U and V.

The implementation process for the radiation source lo-
calization method utilizing random sampling is detailed as
follows:

1) Grid Division: Segment the sensing area into grids.

2) Sampling: Randomly select a certain proportion of grid

points.

3) Data Compensation: Perform time delay compensation
for each sampled grid point.

4) Statistical Computation: Utilize various localization
methods to analyze the compensated data and compute
the relevant statistics.

5) Iteration: Repeat steps 3 and 4 for each sampled grid
point until all have been processed.

6) Matrix Completion: Input the compiled statistical data
into a matrix completion algorithm.

7) Source Localization: Determine the radiation source’s
location at the grid point corresponding to the peak value
in the completed matrix.

This structured approach ensures precise localization of
radiation sources within a defined area using statistical analysis
and matrix algorithms.

B. Solution

To implement the Alternating Direction Method of Multi-
pliers (ADMM) algorithm, it is necessary to modify Equation
(2) by introducing an auxiliary variable Z. The modified
formulation is presented as follows:

min (|2
s.t. PQ(X) = PQ(M), X =17, 4)
X, if (i,7) € Q
where Pq(X);; = i (Z’j)_e " This adjustment
0, otherwise.

introduces Z to facilitate the separation of the optimization
of the nuclear norm and the constraint that X must match the
observed entries M in the set €.

For the matrix completion problem, the objective is to
estimate the unobserved elements of the true, unknown matrix
M using its partially observed entries Po(M). To address
this, we employ a combination of the ADMM algorithm
and the Singular Value Thresholding (SVT) algorithm [13].
This approach solves the optimization problem defined in (5)
through an alternating iterative method.
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The augmented Lagrangian function for Problem (4) is
LX,Z.T) = 2]+ 5IX - 2|} + (X~ Z,T) (5

where p > 0 represents a penalty factor, T is the Lagrange
multiplier, and the notation (-,-) denotes the inner product.
This formulation facilitates the iterative refinement of X and
Z, promoting convergence to the solution that best approxi-
mates the observed data.

Algorithm 1 SVT-ADMM

Input: Mg

Initialize: Maximum number of iterations K, Z°, X%, T9, p,
and e.

for k=1 to K do

STEP 1. Z*+! =D, ,(X* + 1T%)

STEP 2. XF1 = P (2" — 1T%) + Po(M)

STEP 3. Tk+1 — Tlc _ p(szrl _ Xk+1)

if | Xkt — X*| < ¢ then
| break

end

end
Output: X*+1

IV. NUMERICAL EXPERIMENTS

This section evaluates the matrix completion method using
SVT-ADMM.We opted for a DPD method with GLRT detec-
tor. Our simulations were conducted using Matlab R2022b on
a computer equipped with an AMD Ryzen 7945HX CPU. To
enhance computational efficiency, a grid search was performed
using parallel processing of 7 threads.

We segmented the sensing area into a grid and randomly
sampled 30% of the grid points to perform low-rank matrix
completion. Subsequently, we assessed and compared the time
requirements and localization accuracy of various methods.
The simulation scenario was established by generating the
positions of radiation sources and sensing nodes within a two-
dimensional space as follows:

The spatial relationship between the radiation source and
the sensing nodes is illustrated in Figure 1. The actual po-
sition of the radiation source is P, = [—5.6 km, 8.4 km],
and the potential positions of the radiation sources, P,., are
defined within the area {(z,y) | * € [-25 km, 25 km],y €
[—25 km, 25 km|}. The configuration utilizes five sensing
nodes, with detailed simulation parameters provided in Table I.

The vanilla DPD localization method, which processes all
grid points, incurs significant computational costs and may
lead to prolonged execution times. Alternatively, the random
sampling-based method utilizes low-rank matrix completion
techniques to reconstruct the entire matrix from a subset of
observed values, thereby reducing computational demands.
Utilizing the Singular Value Thresholding with Alternating
Direction Method of Multipliers (SVI-ADMM) algorithm
requires setting several parameters, such as the maximum
number of iterations and the penalty factor. The configuration
of these parameters affects the duration needed for matrix

% Emitter Position
2+ O O Sense Node Position

25 : ‘ : ‘ : ‘ : . : :
x (m)

Fig. 1: Spatial distribution of emitter source and sensing nodes.

completion and, indirectly, the execution time of the local-
ization process.

TABLE I: Simulation Setting

Parameter Name Parameter Value
Grid Width 500m
Random Sample 30%
Modulation Type BPSK
Baud Rate 20kHz
Reference SNR [—11:4:5]dB
Sample Rate 600kHz
Observe Time 0.1s
Monte Carlo Numbers for Matrix Completion 20

The perception area is divided into grids, and the fusion
center employs a localization method using GLRT, which
traverses all grid points. Additionally, a localization method
based on random sampling is utilized. Table II presents a com-
parison of the time required for different localization methods
across various grid widths. It is evident that matrix completion
algorithms, such as SVI-ADMM, require significantly less
time than exhaustive traversal methods.

It is important to note that the comparison of time savings
is approximate. In this particular simulation scenario and
with the specified parameter settings, the DPD method using
exhaustive traversal takes approximately five times longer than
the method based on random sampling. The random sampling-
based localization method necessitates careful adjustment of
the parameters of the matrix completion algorithm, such as
the number of iterations, to maximize its effectiveness.

TABLE II: Time consumption of DPD methods.

Grid

101*101 81+*81 61%61 | 41*41

Methods
Exhaustive grid search 26.387s 15.826s | 9.383s | 4.489s
Random Sample (SVT) 5.363s 3.222s 1.908s | 0.911s

Figure 2 depicts the localization results using the DPD
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method based on GLR and the DPD method employing
random sampling (SVI-ADMM), where 30% of the points
are randomly sampled, and the average signal-to-noise ratio
is -5.8 dB. From Figure 3, it is evident that the localization
errors (Root Mean Square Error, RMSE) of the three methods
are comparable when 30

When the radiation source is both three-dimensional
and mobile, the localization challenge escalates to a six-
dimensional grid search, significantly increasing computa-
tional complexity. In such scenarios, the random sampling-
based method demonstrates distinct advantages due to its
reduced computational demands.

V. CONCLUSION

This work combines random sampling with low-rank matrix
completion to address the computational challenges of the
DPD method’s grid search. This technique reduces compu-
tational demands while maintaining accuracy, as validated by
numerical experiments. Future work could explore adaptive
sampling schemes.
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Fig. 2: Example of DPD results (average SNR: -5.8dB)
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Fig. 3: Comparison of localization errors for different methods.
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