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Abstract—Radio map estimation (RME) is crucial for ef-
fective planning and optimization of wireless networks. Tra-
ditional approaches such as interpolation excel at capturing
local smoothness in densely populated data but struggle with
sparse or irregular data. Conversely, matrix completion (MC)
approaches utilize global structures but require huge number of
samples and may produce non-smooth estimates. To integrate
these strengths, we propose a convex optimization approach
for RME (IIMC-RME) that merges interpolation with MC.
This approach formulates the RME task as a low-rank MC
problem constrained by interpolated results. Additionally, we
have developed a convergent algorithm utilizing the alternating
direction method of multipliers (ADMM) to efficiently solve the
IIMC-RME problem. Experimental evaluations on both synthetic
and real-world datasets have shown that IIMC-RME surpasses
existing approaches, thereby achieving superior accuracy in
RME.

Index Terms—Radio Map Estimation, Interpolation, Matrix
Completion, Integrated Interpolation and Matrix Completion

I. INTRODUCTION

Radio map is a spatial representation that shows the radio
signal strength or other relevant properties across a specific
geographical area. It has become an essential tool for op-
timizing wireless network operations and enhancing various
communication processes, such as improving positioning ac-
curacy [1], supporting unmanned aerial vehicle (UAV) route
planning [2] and optimizing resource allocation in dense
network environments [3]. Due to the prohibitively high costs
associated with measuring radio signals at every position in
practical implementations, researchers have developed radio
map estimation (RME) approaches [4]–[6], which aim to
reconstruct complete radio maps by utilizing spatially sampled
measurements.

Recent research on RME predominantly utilizes data-driven
approaches which can be divided into two categories. Deep
neural network (DNN)-based approaches such as RadioUNet
[7], PLNet [8], and FadeNet [9] learn propagation rules and
environment effects on radio map but require extensive training
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data and are often sensitive to the mismatch between training
and real-world environment. In contrast, other data-driven
techniques, such as matrix completion (MC) and interpolation
approaches, only require observations of the current radio
map to perform RME, without the need for additional data
for training. Specifically, MC strives to reconstruct a low-
rank matrix from a partially observed matrix, often employ-
ing nuclear norm minimization (NNM) [10] 1. Interpolation
approaches, meanwhile, predict missing values in the radio
map by fitting a smooth function to observed data points, with
common techniques including linear interpolation (LERP) [13]
and k-nearest neighbor Gaussian process regression (KNN-
GPR) [14].

MC effectively leverages the global low-rank structure
of the radio map but typically requires more samples [15]
comparing with DNN-based approaches and may produce
non-smooth estimates [16]. In contrast, interpolation methods
excel with dense, regularly spaced data, but their accuracy
significantly decreases with sparse or irregular data due to
their heavy dependence on the distribution and density of
observed points [17, Section 6]. To integrate both approaches,
[18] enriches the observation matrix through interpolation
approaches and then performs MC, [19] employs interpolation
as refinement in tensor completion for enhancing RME, and
[20] integrates interpolation approaches directly into the MC
objective function. These approaches represent a direct inte-
gration of interpolation with MC. However, the interpolation
approach’s reliance on the local smoothness of the radio map
limits its effectiveness to certain regions, making it challenging
to directly integrate with MC.

In this paper, therefore, we consider to integrate the advan-
tages of both interpolation and MC to overcome this limitation.
First, we propose a convex formulation, IIMC-RME, that
integrates interpolation within a low-rank matrix framework.
Second, we introduce an algorithm based on the alternating
direction method of multipliers (ADMM) [21] to efficiently
solve the IIMC-RME problem. Finally, our results on both
synthetic and real-world datasets demonstrate that IIMC-RME
outperforms all existing MC and interpolation approaches.

1Radio map itself is not a low-rank matrix, but has many small singular
values. Several approaches [11], [12] have exploited such structure and study
RME from low rank matrix completion view.IC

A
SS

P 
20

25
 - 

20
25

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

co
us

tic
s, 

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g 

(I
C

A
SS

P)
 | 

97
9-

8-
35

03
-6

87
4-

1/
25

/$
31

.0
0 

©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

A
SS

P4
96

60
.2

02
5.

10
89

03
50

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 19,2025 at 08:23:56 UTC from IEEE Xplore.  Restrictions apply. 



II. PROBLEM FORMULATION

A. Problem Statement

RME aims to reconstruct a complete representation of radio
signal strengths over a specific area based on partially observed
data. Let the observed samples be collected in a matrix Y ∈
Rm×n, where Ω ∈ Rm×n is a binary matrix indicating the
availability of data. Specifically, Ωij = 1 if the entry in Y is
observed, or Ωij = 0 otherwise. The objective of the RME
problem is to reconstruct a complete matrix X that matches
the observed entries in Y as close as possible. This problem
can be generally formalized as:

Find X s.t.PΩ(X) = PΩ(Y), (1)

where PΩ(Y) = Ω⊙Y, ⊙ denotes the Hadamard product.

B. Background

To effectively address the RME problem as defined in (1),
it is crucial to establish a suitable criterion for the objective
‘Find X’. In the literature, two primary approaches have been
widely used: MC and interpolation. For MC, [10] proposes
using NNM to promote low-rank solutions. On the other hand,
interpolation-based approaches focus on estimating missing
values through various interpolation techniques. For example,
[13] use LERP and [14] apply KNN-GPR. Below we briefly
review these two types of approaches.

Matrix Completion Approach: Such approach has been
derived based on an important numerical fact that the radio
map has inherently global low-rank structures, see the example
in Figure 1. Based on this finding, the MC approach can be
formulated as [15]:

min
X

rank(X) s.t.PΩ(X) = PΩ(Y). (2)

(a) Radio Map 1 (b) Radio Map 2

(c) Radio Map 3
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Fig. 1: Three different types of radio maps, with the first
two examples taken from [22] and the third from [23], and
their corresponding singular values, where blue represents the
minimum pixel value (0) and red represents the maximum
pixel value (255) in subfigures (a) - (c).

Interpolation based Approach: The motivation is based
on the radio signal propagation rule that signal power dimin-
ishes with distance, suggesting that signal strength changes
smoothly across space. The general formulation of the inter-
polation approach can be formulated as:

Z = INTP(PΩ(Y),Ω), (3)
where INTP denote an arbitrary interpolation approach.

Hybrid Approach: MC approach leverages global low-
rank structure but requires many samples and often yields
non-smooth estimates. Interpolation works well with dense
data but loses accuracy on sparse or irregular data due to the
dependence on the distribution of observed points. To integrate
both approaches, [18] exploits interpolation approaches to
enrich the observation matrix then perform MC, [19] uses
interpolation as refinement in tensor completion to enhance
RME, and [20] integrates interpolation directly into the MC
objective. However, the interpolation approach’s reliance on
the local smoothness of the radio map limits its effectiveness
to certain regions, making it challenging to directly integrate
with MC.

C. Proposed Formulation

To integrate the localized effects of interpolation with the
global structure of MC, we propose the following formulation:

min
X

rank(X)

s.t. PΩ(X) = PΩ(Y),

X ∈ C(Z), Z = INTP(PΩ(Y),Ω),

(4)

where C is a closed set depending on Z. The above formulation
constrains the estimated value X within a closed set C(Z)
that is related to the interpolation results Z. In this paper, we
choose weighted nuclear norm minimization (WNNM) [24]
as the objective and KNN [25] as the interpolation approach,
then the resulting optimization problem becomes:

min
X

∥X∥w,∗

s.t. PΩ(X) = PΩ(Y), ∥PM(X− Z)∥F ≤ η,

Z = KNN(PΩ(Y),Ω),

(5)

where ∥X∥w,∗ =
∑min(m,n)

i=1 wiσi(X), with w ≥ 0 (w ∈
Rmin(m,n)) and σi(X) is the i-th largest singular value of X.
Additionally, M ∈ Rm×n represents a mask matrix where
Mij = 1 indicates regions with dense and regularly spaced
data suitable for interpolation approaches, while Mij = 0
corresponds to areas where the data is sparse or irregular.
Meanwhile, Z is the interpolated matrix derived using the
KNN approach, and η ≥ 0 is a tolerance level that balances
the trade-off between MC and interpolation. Although WNNM
has not been used in RME literature, the singular values of the
estimation results using WNNM are proven to be closer to the
true values compared to NNM, as shown in Figure 2.

Although Problem (5) is convex and could be addressed
using convex optimization tools like CVX [26], its high di-
mensionality imposes significant computational burdens. Con-
sequently, we introduce an efficient ADMM-based algorithm
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in the subsequent section to effectively tackle the IIMC-RME
problem.
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Fig. 2: Comparison of the first 20 singular value differences
between WNNM and Ground Truth, as well as between NNM
and Ground Truth, as an example of IV-A. Clearly, WNNM
leads to almost no difference as indicated by the red curve.

III. PROPOSED ADMM-BASED ALGORITHM

The ADMM fuses the decomposability of dual ascent
with the superior convergence properties of the method of
multipliers [21]. We begin by reformulating Problem (5) as
follows:

min
X,S,A

∥X∥w,∗

s.t. X = S, PΩ(S) = PΩ(Y),

X = A, ∥PM(A− Z)∥F ≤ η,

(6)

where S ∈ Rm×n and A ∈ Rm×n are slack variables intro-
duced to decouple X. The augmented Lagrangian function for
Problem (6) is L(X,S,A,Γ,B, β, α) = ∥X∥w,∗ + β

2 ∥X −
S∥2F + α

2 ∥X − A∥2F + ⟨Γ,X − S⟩ + ⟨B,X − A⟩ where
Γ ∈ Rm×n and B ∈ Rm×n are the Lagrange multipliers, and
β, α > 0 are positive penalty parameters. The optimization
problem outlined in Problem (6) can be addressed using the
ADMM through the following steps:

1) Updating X: Fix the variables as Sk, Ak, Γk, Bk, βk,
and αk, then calculate Xk+1 as follows:

Xk+1 = argmin
X

{
∥X∥w,∗ +

βk

2
∥X− Sk∥2F + ⟨Γk,X− Sk⟩

+
αk

2
∥X−Ak∥2F + ⟨Bk,X−Ak⟩

}
= argmin

X

{
∥X∥w,∗ +

βk + αk

2
∥X−Nk∥2F

}
= argmin

X

{
∥X∥ 2

βk+αk
w,∗ + ∥X−Nk∥2F

}
,

(7)
where Nk = (βkSk + αkAk − Γk −Bk)/(βk + αk).

Then, using [24, Theorem 2], we can derive the closed-form
solution for Problem (7):

Xk+1 = US 2
βk+αk

w(ΣNk
)VT , (8)

where UΣNk
VT denotes the SVD of Nk, Sw(Σ) is the

generalized soft-thresholding operator with weight vector w:

Sw(Σ)ij =

{
max(Σii − wi, 0), if i = j,

0, otherwise.

Algorithm 1 ADMM-based algorithm for solving problem (5)
Initialize: X1 = PΩ(Y), S1 = X1, Γ1 = X1, A1 = X1,
B1 = X1, β1 = 1, and α1 = 1.
do

Update Xk+1 via (8).
Update Sk+1 via (10).
Update Ak+1 via (12) and (13).
Update Γk+1,Bk+1, βk+1 and αk+1 via (14), (15), (16)
and (17).
k ← k + 1

until ∥Xk+1 −Xk∥F < ϵ;
Output: Xk+1

2) Updating S: Fix Xk+1, Γk, and βk, then calculate Sk+1

as follows:

Sk+1 = argmin
S

{
βk

2
∥Xk+1 − S∥2F + ⟨Γk,Xk+1 − S⟩

}
= argmin

S

{
βk

2
∥S− (Xk+1 +

1

βk
Γk)∥2F

}
.

(9)
Disregarding the constant terms and setting the values at the
observed entries:

Sk+1 = PΩc(Xk+1 +
1

βk
Γk) +PΩ(Y), (10)

where Ωc denotes the complement of the set Ω.
3) Updating A: First, we temporarily ignore the constraint
∥PM(A − Z)∥F ≤ η. Then, with Xk+1, Bk, and αk fixed,
we calculate the unconstrained solution Ak+1 as follows:

Ak+1 = argmin
A

{αk

2
∥Xk+1 −A∥2F + ⟨Bk,Xk+1 −A⟩

}
= argmin

A

{
αk

2
∥A− (Xk+1 +

1

αk
Bk)∥2F + Constant

}
.

(11)
Ignoring the constant term, we get the solution:

Ak+1 = Xk+1 +
1

αk
Bk. (12)

Next, we evaluate the values of Ak+1 at the indices set M. If
∥PM(Ak+1−Z)∥F > η, we project Ak+1 onto the constraint
set using the following projection:

Ak+1 = PMc(Ak+1) +PM(Z+ η · Ak+1 − Z

∥Ak+1 − Z∥F
), (13)

where Mc represents the complement of the set M.
Since the constraint ∥PM(A−Z)∥F ≤ η defines a convex

set, the global convergence of the ADMM algorithm can be
maintained, as outlined in [21, Section 5].

4) Updating Γ, B, β and α: Fix Xk+1, Sk+1, and Ak+1,
we can update Γ, B, β and α by the following steps:

Γk+1 = Γk + βk(Xk+1 − Sk+1). (14)

Bk+1 = Bk + αk(Xk+1 −Ak+1). (15)

βk+1 = ρ1 · βk. (16)

αk+1 = ρ2 · αk. (17)
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(a) Ground Truth (b) IIMC-RME(NRMSE=0.0298) (c) WNNM (NRMSE = 0.0317) (d) TNNM (NRMSE = 0.0333)

(e) NNM (NRMSE = 0.1561) (f) NMF (NRMSE = 0.2463) (g) LERP (NRMSE = 0.0463) (h) KNN (NRMSE = 0.0490)

Fig. 3: Comparison of different RME approaches for a specific example from the RadioMapSeer dataset [22], where blue
represents the minimum pixel value (0), and red represents the maximum pixel value (255).

TABLE I: NRMSE of Different Approaches on Various Datasets

Dataset IIMC-RME WNNM TNNM NNM NMF LERP KNN
RadioMapSeer 0.0306 0.0313 0.0332 0.1491 0.2254 0.0459 0.0481

RMDirectionalBerlin 0.0348 0.0440 0.0462 0.1020 0.1628 0.0438 0.0365
Real Data 0.0072 0.0816 0.5994 0.0594 0.1171 0.2294 0.1913

The complete procedure is outlined in Algorithm 1. More-
over, the ADMM framework ensures the convergence of
Algorithm 1 for solving Problem (5).

IV. NUMERICAL EXPERIMENTS

In this section, we assess the effectiveness of the proposed
approach across various datasets. We compare its performance
with benchmark approaches including WNNM, truncated nu-
clear norm minimization (TNNM) [27], NNM, non-negative
matrix factorization (NMF) [28], LERP and KNN.

A. Synthetic Data Experiments

We initially conducted experiments using datasets generated
via ray tracing, including RadioMapSeer [22] and RMDirec-
tionalBerlin [23]. In these datasets, path loss values were
normalized to a grayscale range from 0 to 255. For all
experiments, the sampling ratio is set at 30%, meaning that
|Ω|/(mn) = 30% for X ∈ Rm×n. The results for a specific
example from the RadioMapSeer dataset are presented in
Figure 3, with the evaluation metric being the normalized root
mean square error (NRMSE).

In Figure 3, it is evident that IIMC-RME provides the best
estimation of the ground truth, as shown in Figures 3a and
3b, with the lowest NRMSE. Additionally, IIMC-RME gives
a smoother estimation compared to WNNM, TNNM, NNM,
and NMF, as seen in Figures 3c - 3f. Among these approaches,
NNM still provides a reasonable estimation, though it performs
worse than WNNM and TNNM. The NMF method fails
completely to provide a good estimate. Figures 3g and 3h

indicate that although LERP and KNN produce smoother
results than WNNM, TNNM, and NNM, their estimates are
more blurred in certain areas, such as dark blue regions. In
contrast, IIMC-RME maintains better estimation across all
regions, effectively combining the strengths of interpolation
and matrix completion for superior performance in the RME
problem.

As shown in Table I, the IIMC-RME approach consistently
demonstrates superior performance by achieving the lowest
NRMSE values compared to other benchmark approaches.

B. Real Data Experiments

We evaluated the proposed algorithm using real data from an
office floor at Mannheim University, containing received signal
strength indicator (RSSI) values across nine frequency bands
[29]. The sampling ratio was set to 40%, and the results are
presented in Table I. IIMC-RME achieved the lowest NRMSE
among all approaches, demonstrating its superior performance
on real data, consistent with its results on synthetic datasets.
This significant reduction in NRMSE compared to other
approaches highlights IIMC-RME’s accuracy in real-world
scenarios.

V. CONCLUSION

In this paper, we introduced IIMC-RME, which effec-
tively integrates the advantages of interpolation and MC
approaches. Experimental results from both synthetic and real-
world datasets indicate that IIMC-RME surpasses state-of-
the-art approaches, consistently achieving the lowest NRMSE
across different datasets.
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