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ABSTRACT

Cooperative sensing, a technique employed in cognitive ra-
dio (CR) networks for spectrum sensing, exhibits promising
potential in bolstering spectrum utilization and enhancing net-
work performance. This approach leverages the information
captured by distributed CR users, which is subsequently ag-
gregated at a fusion center. However, the challenges arise
when the data are transmitted with low-quality, resulting in
the consequential issue of missing data. These factors intro-
duce complexity in detecting primary signals and undermine
the reliability of cooperative sensing. In this study, we present
a significant advancement in cooperative sensing methodolo-
gies by introducing a novel approach: a generalized likeli-
hood ratio test (GLRT) type detector specifically designed to
be robust to missing data. More specifically, our proposed ro-
bust GLRT detector modifies the computation of the classical
GLRT test statistic to accommodate the inherent incomplete-
ness of the data and effectively estimates the desired unknown
parameters. Through numerical experiments, we demonstrate
the resilience and robustness of our proposed cooperative sig-
nal detection method.

Index Terms— Cooperative sensing, generalized likeli-
hood ratio test, missing data, robust detector.

1. INTRODUCTION

The ever-increasing demand for limited spectrum resources,
coupled with the simultaneous occurrence of spectrum con-
gestion and underutilization, presents significant managerial
challenges in spectrum allocation [1, 2, 3]. To address this
issue, cognitive radio (CR) technology has emerged as a
promising solution [4]. By leveraging opportunistic spectrum
access, CR technology empowers secondary users to detect
unoccupied spectrum segments and dynamically reallocate
them when primary users are not utilizing them. This ap-
proach not only maximizes the utilization of underutilized
spectrum but also ensures the primary users’ privileges are
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safeguarded [5, 6]. The effective implementation of CR tech-
nologies relies heavily on the reliable detection of primary
signals. Cooperative sensing, a method where devices col-
laborate to sense the spectrum, plays a crucial role in this
regard. In this method, each CR user independently senses
its assigned range and shares the acquired data with the fu-
sion center for comprehensive analysis and integration [7, 8].
By pooling together their sensing capabilities, the fusion
center can achieve a more accurate and reliable assessment
of the spectrum, facilitating optimal utilization and efficient
management of the available resources.

The realm of cooperative sensing encompasses a diverse
range of approaches, including energy detection (ED) [9],
cyclostationary detection (CD) [10], matched filtering detec-
tion (MFD) [11], likelihood ratio test (LRT), and generalized
likelihood ratio test (GLRT) [12]. Each of these techniques
possesses distinct strengths and capabilities, making them
suitable for various spectrum sensing tasks. Their widespread
application in different settings attests to their versatility.
Notwithstanding the advancements achieved in these tech-
niques, certain limitations persist, primarily due to their re-
liance on accurate raw data. The efficacy of signal detection
methods hinges upon the precision and completeness of the
underlying data [13]. In the presence of inaccurate or incom-
plete data, the reliability and accuracy of these methods can
be compromised, thus limiting their full potential.

Indeed, in practical applications, the presence of missing
data presents a substantial challenge to the accuracy of co-
operative sensing [14]. Missing data can stem from various
sources, such as the low signal-to-noise ratio (SNR) transmis-
sion from CR users to the fusion center or node failures [15].
When such situations arise, they introduce incomplete infor-
mation into the dataset, significantly compromising the per-
formance of the signal detection methods mentioned earlier.
Traditionally, two approaches are commonly employed to ad-
dress missing data: deletion and imputation [16]. Deletion
involves the removal of samples that contain missing values,
resulting in a dataset with complete observations. However,
when the rate of missing data is relatively high, this method
can lead to a substantial reduction in the dataset’s size, ren-
dering it potentially insufficient for further analysis or utiliza-
tion. On the other hand, imputation involves the substitution
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of missing entries with derived values that conform to the es-
timated distribution of the observed data. While this method
offers a means to fill in the missing values, it introduces un-
certainty and may result in significant deviations from the true
underlying data. Hence, it becomes crucial to explore more
robust and dependable approaches for handling missing data
in the context of cooperative sensing. By doing so, it is ex-
pected that we will ensure accurate and reliable signal detec-
tion even in the presence of incomplete information.

Therefore, this paper presents a cooperative sensing ap-
proach tailored to meet the specific needs of constructing a
robust detector capable of tolerating missing data scenario.
Our contributions can be delineated as follows:

* We propose a robust GLRT detector which is designed
to be fed with data containing direct missing compo-
nents.

* We employe the EM algorithm to estimate desired co-
variance matrix from such incomplete dataset.

* The numerical experiments are conducted to demon-
strate the effectiveness of our proposed robust detector
against missing data.

2. SIGNAL MODEL

Consider a scenario in which a cognitive radio (CR) net-
work system is comprised of P CR nodes and a primary
user equipped with r antennas. The signals transmitted by
the primary user, denoted as {si}il (s; € C"), are stacked
as a matrix § = [sy,...,sx5] € C™N, Tt is commonly
assumed that the primary signal follows a circularly symmet-
ric complex Gaussian distribution with a zero mean. In this
setup, the P CR nodes, each equipped with an antenna array,
independently sense the transmission of the primary signal.
They send their sampled data to the fusion center, which
makes the decision regarding the presence or absence of the
primary signal. The received signal matrix X € CP*" com-
prises observations from P CR nodes over N consecutive
time slots. The wireless channel H € CP*"  which con-
nects the primary and secondary users, is assumed to follow
a wide-sense stationary uncorrelated scattering (WSSUS)
model. The system accounts for additive white Gaussian
noise (AWGN) as V' € CP*¥  assuming it to be independent
and identically distributed (i.i.d.) across antennas and time.
The noise follows a zero-mean Gaussian distribution with a
diagonal covariance matrix 32, In this study, we assume that
the parameter r is known, while the noise variances at each
cognitive radio (CR) node are considered unknown.

Denoting R as the covariance matrix of the received signal,
the hypothesis testing problem can be reformulated as:

HolRE@o, Hi:Re O. 2)

Here, ©g and O, are defined as follows,

Oy = {Diag(c?) |o* > 0}

O, = {M + Diag(c”) |[rank(M) < r, M = 0, o> > 0}
3)

The classical generalized likelihood ratio test (GLRT) [18]

statistic is then calculated as the ratio of the generalized like-

lihoods, &, under the two hypotheses. The signal existence is

determined if ¢ exceeds a predetermined threshold 7, i.e.,

X|R;) "
S, 4)

X R %

where f represents the likelihood of a complex multivariate
Gaussian distribution given complete observation X, R, and
R, are the estimated covariance matrices from X under the
two hypotheses.

Indeed, when the observed data matrix X is incomplete,
the classical GLRT detector becomes infeasible. In the sub-
sequent section, we will delve into the discussion of a robust
detector that can effectively handle missing data in a sequen-
tial manner. This approach aims to overcome the limitations
posed by incomplete observations, ensuring reliable and ac-
curate signal detection.

3. ROBUST DETECTOR AGAINST MISSING DATA

Denote X5, as the observed data at the fusion center, we pro-
pose to use the following test statistic to decide the existence
of the primary signal:

27, ®)

where f represents the likelihood of a complex multivariate
Gaussian distribution given partial observation X s, i.€.,

H —1
exp(imi,obsRLobsmiaObs)

(m) P det(R; obs) , ©

Tiobs € CPi denotes the observed part of x;, R; s TEpre-
sents the sub-matrix of R corresponding to the observed en-
tries of x;, Ro and I:?,l are the estimated covariance matrices
from X ;s under the two hypotheses, i.e.,

The spectrum sensing issue is framed as a binary hypoth- Ry = argmax f(Xps|R), 7
esis testing problem [17], aiming to distinguish between, Re6o
Ho: X =V, Hi:X=HS+V. 1) Ry = arg max f(Xops | B)- ®)
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Indeed, obtaining accurate estimates for the covariance matri-
ces, namely R, and Ry, from the partially observed matrix
Xopbs 18 not a straightforward task due to the complex expres-
sion of f(Xeps|R). In the subsequent discussion, we will
address the approach to solving problem (7) and problem (8),
which pertain to the estimation of these covariance matrices.

3.1. Estimate R, Under
Let us consider the optimization problem at hand:

Xops|R). ®

max
RecOg f(
Given that R is actually a diagonal matrix defined as R =
diag(c?,03,...,0%), each element within R is 1ndependent
As a result, 1t is feasible to estimate each element crj ] =

., P independently. To derive the log-likelihood with re-
spect to 0]2. and find its maximum, we set the derivative to
Z€ero, i.e.,

Ny

1
@) =%, ; (@055 [@i,005], (10)

Here, N; represents the number of samples for the j-th di-
mension. This implies that we take the average over all ob-

served values of dimension j to estimate O'j2-.

3.2. Estimate R1 Under H;
Consider the following optimization problem:

max  f(Xops|R). an

RcO;

Due to the presence of missing values, directly solving the
aforementioned problem becomes challenging. Therefore, we
propose employing the expectation-maximization (EM) algo-
rithm [19] to estimate R, using X,ps. The EM algorithm,
which is an iterative process consisting of two steps, is em-
ployed to find the maximum likelihood estimates of param-
eters in probabilistic models that include latent variables or
missing data [20]. It is worth noting that the complete data
log-likelihood function is expressed as follows:

N
L(R|X) =log [ [ f(ai|R)
= (12)
= —Nlog|R| - Y Tr(R™'w;z]").
=1

Expectation (E) Step Let us denote the covariance matrix
at the t-th iteration as R(Y). Based on this, we formulate the
surrogate function as follows:

Q(RIRY)
=Ex,,..| Xm0 [L(R]X)] (13)
— _Nlog|R| — Tr(R_IS(t)),

where S = S"" %87 +®;, X,,; represents the missing
values in X, &; is the conditional mean of x; whose missing
elements will be found using

jzﬂ,mis = E(:L'z mis|wi,ab57 R(t))

R(t)

i,mis,obs (

(14
Rgfzbs,obs)_lwiﬂb&

the (j, k)-th element of ®; € CP*F is zero if either z;, or
Ty,s 1S observed, otherwise is the corresponding element of
the conditional covariance matrix of Ty y,s, 1.€.,

E(mz mzsx ‘mz obs» R( ))

T, T)’L’Lé

_ 15)
= Ri,mis,mis - Ri,mis,obsRl obs, ObSRi,obs,’mis-
Maximization (M) Step In the M step, our goal is to solve
the following sub-problem:

max

()
max  QRIRY), (16)

This problem can be effectively resolved by utilizing the al-
gorithm presented in [21, Algorithm 1]. Moreover, we up-
date R(**Y) using its optimal solution obtained from this al-
gorithm.

The Overall Algorithm To summarize, in the E step, we
compute the statistics S(*) based on the current R("). In the
M step, we utilize S® to update R(**1). Based on these
steps, we can formulate the Algorithm 1 as follows.

Algorithm 1 An EM-based algorithm for Problem (11).

1: Initialize R°.

2: fort =0,1,2,...do

3. E-step: compute S®) using (13);

4:  M-step: update R(*Y by solving problem (16) via
[21, Algorithm 1];

5 t—t+1;

6:  Terminate when converges;

7

8

. end for
. Return R!.

4. SIMULATION RESULTS

This section presents numerical experiments to demonstrate
the efficacy of our proposed robust cooperative spectrum
sensing techniques within a defined simulation environment.

We simulate an environment with eight distributed CR
users (P = 8). The goal is to detect a single primary signal
source (r = 1), transmitting Quadrature Phase Shift Keying
(QPSK) modulated signals at a baud rate of 20 kHz. The re-
ceivers, operating at a sampling rate of 100 kHz, connect to
the signal source via independent Rician fading channels with
a K-factor of 4. The noise power at the CR users, represented
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as ?7,? (i =1,...,P), equals 3, uniformly distributed within
an interval of [—1,1] dB. Each simulation uses N = 500
consecutive samples, or approximately 5 milliseconds. The
threshold ~ is derived from the empirical test statistics of
10000 pure noise data realizations, setting the probability of
false alarm Pg 4 to 1%.

We initially carry out experiments to evaluate the proba-
bility of detection with varying proportions of missing data.
Figure 1 depicts the relationship between the detection prob-
ability of our proposed robust GLRT method and the SNR.
The proportions of missing data are set at 0%, 20%, 40%,
and 50%, with the 0% condition serving as a baseline for
comparison. The results demonstrate that an increase in SNR
consistently enhances detection performance across all condi-
tions, and a lower percentage of missing data correlates with
improved performance. Notably, the experimental outcomes
reveal that our method experiences only a marginal loss of
about 3 to 4 dB in equivalent SNR, even with a data omission
rate of 50%.
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Fig. 1: Probability of detection versus SNR under different
percentages of missing data.

In this investigation, we shift our focus to an alternative
strategy for handling missing values. We include three other
methods as benchmarks to compare their performance with
our proposed algorithm, which are:

¢ Classical GLRT method fed with (accurate) full data;
* Classical GLRT method fed with data after imputation;
¢ (Classical GLRT method fed with data after deletion.

We maintain the settings of the data generation process as be-
fore. The appropriate thresholds for detecting the presence
of the primary signal in X, are pre-calculated using pure
noises. We analyze how the probability of detection (Pp)
changes with variations in the average SNRs of CR users. To
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Fig. 2: Probability of detection versus SNR (20% missing
data at random).

ensure efficiency and avoid excessive sample elimination, we
set the missing rate at a modest value of 20% for the deletion
method.

The results obtained from our investigation are presented
in Figure 2. It is evident that our robust detector outperforms
both the deletion and imputation methods, exhibiting a signif-
icantly higher Pp response at the same SNR which is defined
in the time domain. Therefore, in practical applications, our
algorithm proves to be an effective solution for addressing the
missing data problem.

5. CONCLUSION

In this paper, we have presented a novel strategy to tackle
the challenge of signal detection in cognitive radio systems,
specifically when confronted with missing data. Our ap-
proach introduces a robust detecting method that involves
estimating the structured covariance matrices from data con-
taining missing values. The performance of this method is
commendable, even in the presence of missing data. Through
extensive simulations, we have demonstrated the effective-
ness and robustness of our proposed detecting method. These
results validate the efficacy of our approach and highlight
its potential for practical implementation in cognitive radio
systems.
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