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ABSTRACT

A fundamental problem in cognitive radio is spectrum sens-
ing, which detects the presence of the primary users in a li-
censed spectrum. To boost the detection performance and ro-
bustness, the multiantenna detector has been investigated and
various related methods have been developed, e.g., the energy
detector, the eigenvalue arithmetic-to-geometric mean detec-
tor, and the generalized likelihood ratio test detector. Coop-
erative sensing, which makes use of multiple receivers dis-
tributed in different locations, has the advantage of being able
to make full use of the distributed antennas and enjoy a high
spatial diversity gain. However, the successful employment
of cooperative sensing depends on the reliable information
exchange among the cooperating receivers over a long range,
which may be impractical for real-world scenarios. In this pa-
per, we consider the scenario where each receiving node can
only broadcast its received raw data in a short-range com-
munication fashion. We propose a novel cooperative sensing
scheme by allowing each node to send to the fusion center
only local correlation coefficients, computed within a neigh-
borhood. A detection algorithm, based on matrix factoriza-
tion of the partially received sample covariance matrix, i.e.,
with missing entries, is proposed. The performance of our
proposed cooperative scheme is verified via numerical exper-
iments.

Index Terms— Cooperative sensing, matrix factorization,
sample covariance matrix, missing entries.

1. INTRODUCTION

The cognitive radio (CR) communication and network is
regarded as a promising technology for the fifth-generation
(5G) wireless communication and internet of things (IoT)

This work was supported in part by the National Nature Science Foun-
dation of China (NSFC) under Grant 62201362, Grant 62101350, and Grant
62206182, and in part by the Shenzhen Science and Technology Program
(Grant No. RCBS20221008093126071).

systems [1, 2, 3]. This technology is endowed with high
spectrum efficiency and data transmission rates by means of
exploiting the opportunistic spectrum access of other avail-
able networks. In a CR network, CR users are allowed to
make use of the frequency band allocated to other primary
users, when the latter is inactive [4]. The spectrum sensing
technology is necessary for CR users to monitor the occupa-
tion status of the frequency band of interest. The cooperative
sensing technique is able to make full use of the antennas
that provide service to the distributed CR users and enjoy
the spatial diversity gain [5, 6, 7]. For example, a group of
unmanned aerial vehicles (UAVs), each of which is equipped
with an omnidirectional antenna, may apply the cooperative
sensing technology to detect the primary signals.

There exist several signal detection methods realizing the
spectrum sensing task. Let xt (a p-dimensional complex col-
umn vector) represent the received signals of p antennas at
time t. The simplest energy detector uses the energy of the
received signals, i.e.,

∑
t ‖xt‖2, to decide the presence of pri-

mary signals [8]. Note that the noise power is assumed to be
known apriori at the CR receivers to keep satisfactory detec-
tion performance [9]. Of course, there also exist numerous de-
tection methods being able to detect signals without the prior
knowledge of the noise variance. They are realized by tak-
ing advantage of the correlation structure in the received data.
Given the eigenvalues {λi}pi=1 of the sample covariance ma-
trix, S = 1

T

∑
t xtx

H
t where T is the number of samples,

the eigenvalue arithmetic-to-geometric mean (AGM) detector
calculates the statistic as the ratio of the eigenvalues’ arith-
metic mean to the geometric mean [10]. It is based on the
fact that the eigenspectrum will spread out if the primary sig-
nal exists. Similar methods include the eigenvalue-moment-
ratio (EMR) detector [9], the maximum-minimum eigenvalue
(MME) detector [11], the scaled largest eigenvalue (SLE) de-
tector [12], and the generalized likelihood ratio test (GLRT)
detector [13]. In the cooperative sensing, all aforementioned
methods are applicable if the raw data can be correctly col-
lected from the distributed receiving nodes (CR users) to the
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fusion center.
The successful transmission, however, of raw data from

the distributed receiving nodes to a shared fusion center might
be impractical for real-world applications [4, 9, 14]. One
reason is that in wireless communications, the transmitting
power is limited due to, e.g., hardware constraints [15] or se-
curity issues [16]. In other words, the high-speed and reliable
wireless data transmission is only accessible within a limited
communication distance [17]. Therefore, a CR user may only
share its raw data with neighboring receiving nodes, and not
with the remote fusion center. In this case, all the previous
signal detection methods will fail due to the absence of raw
data.

In this paper, we propose a spectrum detecting scheme
applicable in the aforementioned communication restricted
scenario. The major contributions of this paper are as fol-
lows: i) we consider the cooperative spectrum sensing prob-
lem, where each receiving node can establish high-speed re-
liable data transmission links only with nearby nodes. To this
end, we propose a cooperative sensing scheme where each
receiving node broadcasts its raw data to all nearby nodes.
Then, each node calculates the sample covariances between
its received raw data (from nearby nodes) and that of itself,
and sends them to the fusion center; ii) we propose a novel
detection method, which is applicable when the fusion center
can only receive the sample covariance matrix with missing
entries. iii) we also propose a practical algorithm to solve the
resulting optimization problem, which is to approximate the
target sample covariance matrix with missing elements via the
sum of a low-rank matrix plus a diagonal one.

2. PROBLEM FORMULATION

2.1. Signal Model

Consider p distributed CR users each of which is equipped
with a single antenna, whose purpose is to cooperatively sense
a frequency band of interest that is occupied by a primary
user. The channels between the primary user and each one of
the CR users are frequency non-selective (flat) fading and the
rank of the respective signal subspace is assumed to be known
as r. There are two hypotheses, i.e., H0, signal absent, and
H1, signal present. Denote xt ∈ Cp as the vector of the
received signals of these p receivers at time t. The hypothesis
testing problem is written as [13]

H0 :xt = nt,

H1 :xt = Hst + nt,
(1)

where st ∈ Cr is the primary signal following the i.i.d. zero-
mean circular complex Gaussian (CCG) distribution, H ∈
Cp×r is the unknown channel among the primary user and
the receivers, and nt ∈ Cp is the i.i.d. zero-mean CCG and
uncorrelated noise.
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Fig. 1: The proposed distributed detection scheme under the
restricted communication distance scenario.

Without loss of generality, we assume the covariance ma-
trix of the primary signal, s, to be identity, i.e., E

(
ssH

)
= Ip

(note that any spatial correlation and scaling of the primary
signal can be absorbed in H). Denote by Σ the covariance
matrix of the received signal, x. The hypothesis testing prob-
lem (1) can equivalently be written as

H0 :Σ = Ψ,

H1 :Σ = HHH + Ψ,
(2)

where Ψ = Diag (ψ1, . . . , ψp) � 0 is the covariance ma-
trix of the noise n. Various methods have been developed for
problem (2), e.g., EMR [9], MME [11], GLR [13].

2.2. Considered Scenario

All the above methods, however, require that the raw data, i.e.,
X = [x1, . . . ,xT ]

T , can be correctly collected at the fusion
center. As shown in Fig. 1, since the communication range of
each CR user (receiving node) is limited by power constraints,
the raw data in node, e.g., i can not be successful transmitted
to the fusion center. Instead, the raw data are broadcasted and
can be correctly received only by its geographically nearby
nodes. Note that, in this case, Problem (2) becomes extremely
challenging, with the difficulty stemming from the lack of raw
data in the fusion center. To the best of our knowledge, this
case has not been considered in the literature before and no
existing methods can be employed.

In this paper, we consider a novel cooperative sensing
scheme by allowing each node to transmit to the fusion center
only the sample covariances between the received data from
the other nodes (within its neighborhood) and that of itself.
These locally computed sample covariances are transmitted
to the fusion center via the low-rate but reliable communi-
cation links, e.g., via satellite communications [18]. If each
node can reliably receive data from all the rest, the sample co-
variance matrix in the fusion center is fully formed. However,
since the nodes can only access nearby nodes, the fusion cen-
ter can only obtain a partially observed sample covariance
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matrix S ∈ Cp×p. Let Ω ⊂ [p]× [p] be a symmetric index set.
We assume that S is only observed on the entries with index
in Ω, and the diagonal elements of S are always collected, i.e.,
(i, i) ∈ Ω, i = 1, . . . , p. The goal of this paper is to propose
a novel detector algorithm using only the partially observed
matrix S. The details are discussed in the next section.

3. FERT DETECTION ALGORITHM

In this section, we derive the matrix factorization error ra-
tio test (FERT) detector, which solves Problem (2) under the
condition of a partially observed matrix, S. The idea is to con-
struct the test statistic as the ratio of the matrix factorization
error under hypothesisH0 andH1,

ξFER =
f
(
S | Σ̂0,H0

)
f
(
S | Σ̂1,H1

) H1

≷
H0

γ, (3)

where the threshold γ is set to provide the desired probabil-
ity of false alarm, f (S |Σ) = ‖PΩ (S−Σ)‖2F denotes the
matrix approximation error, and

Σ̂0 = arg min
Σ0=Ψ

‖PΩ (S−Σ0)‖2F

Σ̂1 = arg min
Σ1=HHH+Ψ

‖PΩ (S−Σ1)‖2F
, (4)

where PΩ (Z)ij =

{
Zij (i, j) ∈ Ω

0 (i, j) /∈ Ω
. The FERT decidesH1

if ξFER > γ. The threshold γ can be set by simulating an
empirical distribution, formed when the signal is known to be
absent.

It is obvious that Σ̂0 = Diag (S). However, Σ̂1 is not easy
to obtain since the corresponding problem is an non-convex
one for H. Therefore, in the following part, we propose an
optimization algorithm for obtaining Σ̂1 in (4).

3.1. An Alternating Optimization Algorithm

Consider problem (4) for Σ̂1 and reformulate it as

min
H,Ψ

f(H,Ψ) :=
∥∥PΩ

(
S−HHH −Ψ

)∥∥2

F
,

s.t. H ∈ Cp×r, Ψ = Diag(ψ1, . . . , ψp) � 0.
(5)

We can simply partition the variables into H and Ψ, and con-
duct an alternating optimization scheme.

3.1.1. Update H

Given a fixed Ψ, the sub-problem w.r.t. H is written as

min
H∈Cp×r

f(H) :=
∥∥∥PΩ

(
Ŝ−HHH

)∥∥∥2

F

:=
∑

(i,j)∈Ω

∣∣∣hH
i hj − Ŝij

∣∣∣2 , (6)

where Ŝ = S−Ψ and hi is the i-th row of H. This problem is
typically a low-rank matrix factorization problem with miss-
ing data [19, 20, 21]. It can be solved via the vanilla gradient
descent method, whose updating rule is

Hk+1 = Hk − η∇f(Hk), (7)

where η > 0 is the step size and the i-th row of ∇f(Hk) is
calculated as

∇f(hk
i ) = 4×

∑
j:(i,j)∈Ω

(
hH
j hi − Sij

)
hj . (8)

3.1.2. Update Ψ

Given a fixed H, the sub-problem w.r.t. Ψ is written as

min
Ψ

∥∥PΩ

(
S−HHH −Ψ

)∥∥2

F
,

s.t. Ψ = Diag(ψ1, . . . , ψp) � 0.
(9)

The optimal solution Ψ? is simply

Ψ?
ii =

[
Sii − (HHH)ii

]
+
. (10)

The proposed alternating minimization algorithm for
problem (5) can be succinctly summarized as follows: itera-
tivly updating H using (7), and updating Ψ using (10). Note
that, in practice, we may update H, i.e., executing (7), for
only a few iterations, i.e., Algorithm 1, to reduce the time
consumption.

Algorithm 1 A practical algorithm for problem (5).

1: Initialize H0 and η.
2: for k = 0, 1, 2, . . . do
3: Update Hk+1 = Hk − η∇f(Hk);
4: Update Ψk+1 as in (10);
5: Terminate when converges;
6: end for
7: Return H and Ψ.

4. NUMERICAL EXPERIMENTS

In this section, we validate the performance of our proposed
cooperative detector and optimization algorithms through nu-
merical experiments.

Consider the case where p = 8 distributed CR users and
each of them is equipped with a single omnidirectional an-
tenna. The task is to detect a r = 1 single-antenna primary
signal source. The primary signal is carrying a QPSK mod-
ulated signal with the baud rate being equal to 20kHz. The
sampling rate at each receiver is 100kHz. The channel be-
tween each receiver and the source is assumed to be an in-
dependent Rician fading channel with the K-factor being 41.

1The modulated signals are generated using the MATLAB Communica-
tions Toolbox [22].
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Fig. 2: An example of Algorithm 1 convergence in solving
Problem (5).

Since the CR users are spatially distributed, we assume that
the noise power is σ̂i = α (i = 1, . . . , p), and α is given
in dB, i.e., 10 log10 α, is uniformally distributed in an inter-
val [−1, 1] [10]. The received signal-to-noise ratio (SNR) is
assumed to be the same for each antenna. Each simulation ex-
periment is conducted using n = 10000 continuous samples
(within 100 milliseconds).

4.1. Performance of The Algorithm

We first illustrate the performance of our proposed Algorithm
1 in solving problem (5). To check the generalization of our
proposed algorithm, we randomly set 50% of the elements of
S in the fusion center to be missing. The initial point of our
algorithm is H0 with H0

ij ∼ CN (0, θ), where θ is the median
of the off-diagonal elements of |S|. We use the Algorithm
1 and fix the step size as η = 0.5. The algorithm terminates
when the relative changes of the objective and the variables of
problem (5) are less than 10−5. We conduct the experiments
using three random realisations of partial observations and we
present the convergence of our proposed algorithm in Fig. 2.
We can see that our proposed algorithm can converge well in
all cases.

4.2. Detection Performance

Next, we illustrate the performance of our proposed detection
method. We consider a simple communication restricted ap-
plication scenario, where the i-th receiving node can only col-
lect raw data from the j-th receiving node when |i− j| = 1,
i.e., a partially observed sample covariance matrix Sm is col-
lected at the fusion center with the observation index set Ω =
{(i, j) | 1 ≤ i, j ≤ p, |i− j| ≤ 2}. For comparison, we also
compare it with several benchmark methods and feed them
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Fig. 3: Probability of detection by several detection methods.

with fully observed data. The test threshold, γ, is chosen to
achieve probability of false alarm PFA = 1%. The simula-
tion results are presented in Fig. 3. It is clear that, among
all the benchmark methods, the energy detection method per-
forms the worst and the GLRT method performs the best. This
can be explained since the GLRT method is able to cope with
the unequal noise variances in different receiving nodes. Our
proposed FERT method can achieve similar performance as
that of GLRT method if fed with the fully observed S. The
small improvement in the performance of the proposed FERT
method, compared to the GLRT method, might be due to the
non-convex properties of the related optimization problems.
Note that all the benchmark methods require the fully re-
ceived data. Therefore, it is significant that, even when fed
with a partially observed sample covariance matrix, our pro-
posed FERT method can also achieve performance better than
all benchmarks except the GLRT method (which, of course,
requires the full covariance matrix).

5. CONCLUSION

In this paper, we have considered the cooperative sensing
problem where only local data transmission is allowed. We
have proposed a matrix factorization error ratio test method
to detect the presence of a signal. An alternating update based
algorithm has been proposed to solve the matrix factorization
problem with missing entries in the sample covariance ma-
trix. Numerical experiments have shown the efficiency of our
algorithm and the effectiveness of our cooperative sensing
scheme.
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