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Abstract: Automated optimization modeling (AOM) has evoked considerable interest with the rapid evolution of large lan-
guage models (LLMs). Existing approaches predominantly rely on prompt engineering, utilizing meticulously designed expert
response chains or structured guidance. However, prompt-based techniques have failed to perform well in the sensor array signal
processing (SASP) area due the lack of specific domain knowledge. To address this issue, we propose an automated modeling
approach based on retrieval-augmented generation (RAG) technique, which consists of two principal components: a multi-agent
(MA) structure and a graph-based RAG (Graph-RAG) process. The MA structure is tailored for the architectural AOM process,
with each agent being designed based on principles of human modeling procedure. The Graph-RAG process serves to match user
query with specific SASP modeling knowledge, thereby enhancing the modeling result. Results on ten classical signal processing
problems demonstrate that the proposed approach (termed as MAG-RAG) outperforms several AOM benchmarks.
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1 Introduction

Sensor Array Signal Processing (SASP) has experienced

remarkable advancements over the past few decades [1],

which finds utility in a spectrum of applications, includ-

ing telecommunications, radar, sonar, etc. Research within

this field has encompassed areas such as beamforming,

direction-of-arrival (DOA) estimation, primal user detec-

tion, source localization, etc. Over time, SASP has wit-

nessed a paradigm shift from a predominantly parametric

approach [2] to optimization methodologies [1], [3], lead-

ing to substantial advances in various application domains.

Typically, SASP problems can be formulated as optimization

problems, where mathematical formulations (objective func-

tions and constraints) are established from the prior knowl-

edge of the sensor system models and the final processing

goal.

Traditionally, solving SASP problems necessitates the

manual formulation and development of algorithms by hu-

man experts. However, the recent invention of Large Lan-

guage Models (LLMs) demonstrates the potential to revo-

lutionize SASP problem-solving. In particular, LLMs are

capable of comprehending natural language inputs and gen-

erating logical sequences as responses, allowing users to de-

scribe the SASP problem and requirement in an intuitive

way. Moreover, LLM has shown talent towards compre-

hension on mathematical equations [4]–[6]. This enables

the automation of optimization model and algorithm sug-

gestions, streamlining the process of finding effective solu-

tions for diverse SASP problems. This approach is termed

automated optimization modeling (AOM), which has great

potential for immediate but reasonable solutions for a wide

range of SASP applications.

Currently, AOM methods [4], [6] predominantly utilize

prompt engineering, including guiding LLMs to perform
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step-by-step reasoning [6]–[12] and deploying multi-agent

systems to generate manually crafted response chains [13]–

[16]. This approach engages LLMs in constructing logical

sequences for problem solving, emulating human cognitive

processes [7]. However, the inherent knowledge deficien-

cies present within LLMs has not yet been resolved. To

clarify the knowledge referenced, the retrieval-augmented

generation (RAG) [17], [18] method has recently been pro-

posed. Notable performance improvements have been re-

alized through the optimization of dataset structure [19]

and the enhanced training of the retriever model [20]–[22].

However, despite these efforts, the SASP domain involves

substantial domain-specific knowledge, limiting the success

achieved by current AOM strategies.

To realize the potential of LLM-assisted AOM for SASP

problem-solving, we introduce an automated modeling ap-

proach, which combines a multi-agent (MA) structure with

a specific graph-based RAG (Graph-RAG) process. The MA

structure is specifically tailored for the architectural com-

plexities of AOM processes, following on principles of hu-

man expert’s problem-solving logic. Each agent in the sys-

tem is designed to tackle a segment of the problem, thereby

decomposing a challenging mission into manageable sub-

tasks [13]. The Graph-RAG component enhances this setup

by matching user inputs with detailed domain modeling

knowledge. This process mitigates the complexity of the

AOM task, and further improves the performance by ensur-

ing that only pertinent information is retrieved and utilized in

modeling generation. Unlike traditional RAG, Graph-RAG

organizes prior knowledge using a graph structure, making

the retrieval process precise, crucial for fields like SASP

where specific knowledge is needed [18]. The proposed ap-

proach is termed as MAG-RAG. To evaluate it, we build a

testing dataset, which includes 10 classical SASP problems

along with recommended solutions. The experimental re-

sults indicate that MAG-RAG approach outperforms several

AOM benchmarks. Meanwhile, several challenging issues

are identified and discussed for further research.
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Fig. 1: The overall workflow of the proposed method.

2 Problem Formulation

To facilitate the emergence of domain-specific knowl-

edge generation capabilities in LLMs, supervised fine-tuning

(SFT) is typically employed to encode specialized knowl-

edge into the additional neural network parameters. Given a

dataset D on SASP field, the objective function of SFT [23]

can be formulated as:

minimize
Δθ

∑
(A,Q)∈D

(−log pθ+Δθ (A|Q)), (1)

where Q denotes the question text and A is the correspond-

ing answer text. Notations θ and Δθ are the pre-trained pa-

rameter and tuning parameter in SFT process.

However, SFT is typically accompanied with high compu-

tational complexity and strict requirement on data quantity.

Instead, we employ in-context learning for this problem [24]

which enable us to exploit rich research document in the lit-

erature:

minimize
Φ

− log pθ

⎛
⎝A

∣∣∣∣∣∣Q,Φ(G,Q︸ ︷︷ ︸
K

)

⎞
⎠ , (2)

where G represents a knowledge graph constructed from the

literature documents (with details presented in Section 3.2),

K denotes the Q-related knowledge that has been retrieved

from G, and Φ signifies the methodology employed for

knowledge searching.

The key for designing Φ is designing relevance metric be-

tween K and Q. In this work, we employ the cosine dis-

tance metric d(·, ·) to measure the similarity between their

embeddings. Further, to facilitate the searching process, we

construct K as four parts:

K = (P,M,L,S), (3)

where P represents the terminology description, M is the

system model, L represents the optimization formulation,

and S is the corresponding optimization algorithm. Based

on such a decomposition, a straightforward way to solve (2)

is to sequentially matching Q with the four constituent seg-

ments of K, and subsequently concatenate four results to re-

construct K. However, this method is computationally in-

tensive, and the correlation between Q and M, L, S grad-

ually diminishes in the semantic space [25]. Considering

the sequential interdependencies within the logical chain of

problem-solving, we further transform (2) into the following

form:
minimize
P,M,L,S

d(fe(K), fe(Q))

s.t. K = (P,M,L,S)
P ∈ GPT ,M ∈ GSM ,

L ∈ GOF ,S ∈ GOA

(4)

where M ∈ GSM , L ∈ GOF , S ∈ GOA and P ∈ GPT cor-

responds to “System Model (SM)” layer, “Optimization For-

mulation (OF)” layer, “Optimization Algorithm (OA)” layer,

and “Problem Type (PT)” layer in G respectively (c.f. Sec-

tion 3.2). The intuition behind the above transformation is

straightforward, that the greater the relevance between Q
and K, the more likely the LLM is to yield desired out-

comes. Building upon this insight, we have constructed a

graph database and employed the RAG approach to enhance

the performance of LLM output.

3 The Proposed AOM Approach

Solving problem (4) involves constructing a knowledge

graph G, which is generated using a multi-agent workflow

described in Sections 3.1 and 3.2. In Section 3.3, problem

(4) is addressed by matching the cosine distance across each

layer of the graph.

3.1 The MAG-RAG Pipeline
The pipeline of the developed approach consists of two

workflows as illustrated in Fig. 1. The blue workflow illus-

trates the utilization of the Graph-RAG technique for con-

structing a knowledge database from domain-specific doc-

uments. This knowledge database can provide professional

optimization modeling examples tailored to the user’s query

input (see example in Fig. 2). The other workflow in brown

is the automated optimization modeling procedure, requir-

ing the involvement of several agents. Before we formally
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introduce the pipeline structure, we specify three agents1 for

AOM in the SASP domain, namely, Extraction Agent AET,

Terminology Agent ATG, and Optimization Modeling Agent

AOM. The role of each agent is explained as follows:

Extraction Agent AET. This agent receives raw doc-

uments {I1, I2, . . . , IN} in the SASP field as input, and

strictly follows instructions from prompt PET to extract

knowledge {O1, O2, . . . , ON} critical for optimization mod-

eling. Take Ii, i ∈ [1, . . . , N ] as an example, the key knowl-

edge extraction process can be formulated as follows:

Oi = AET (PET, Ii) . (5)

Terminology Agent ATG. This agent transforms origi-

nal user input Q into terminological description P . Given

a specially designed prompt instruction PTG, the extraction

process is as follows:

P = ATG (PTG,Q) . (6)

Optimization Modeling Agent AOM. This agent pro-

vides a complete modeling result (M,L,S) for P with ref-

erence to the extracted prior knowledge K. Prior knowledge

K is obtained from a Graph-RAG searching process (to be

explained in Sec. 3.3) with the query embedding of P . The

generation process of AOM can be formulated as follows:

(M,L,S) = AOM (POM,K,P) . (7)

The pipeline of AOM is summarized as follows. Firstly,

with the user-input query Q including the scene description,

a Terminology Agent ATG converts unspecified user input

query into a terminological problem description P . Sec-

ondly, we retrieve top-k most relevant documents as refer-

ence knowledge K based on description P . Finally, com-

bining the terminology description P with reference knowl-

edge K, Agent AOM provides an answer (M,L,S) as the

output. The retrieval technique in the second step is Graph-

RAG which will be explained in the subsequent section.

3.2 Graph-RAG Dataset Construction
To assist LLMs with sophisticated SASP modeling, we

construct a graph-based data base, where domain knowl-

edge is extracted and represented as nodes, then weighted

edges are formed among correlated nodes before knowledge

searching.

Modeling Information Requirements: Initially, N do-

main knowledge documents {I1, I2, . . . , IN} are collected

as raw property to construct the database. Though we an-

ticipate the original documents to possess more informa-

tion, they may also introduce information redundancy. Since

not all the provided information contributes positively to the

AOM task, excessive information imposes an additional bur-

den on the modeling agent, which must first extract the es-

sential information from the documents before proceeding

with the subsequent modeling process. Besides, context lim-

itation of LLMs [13], [26] should also be seriously treated.

1Agent in this work refers to one LLM, which takes task-specific prompt

and task-relevant context as input. To make LLM agents being aware

of their concrete responsibilities, each agent is provided a specially de-

signed prompt that outlines specific tasks, guidelines, and structured out-

puts. Through prompt design, agents mirror the modeling principles of hu-

man experts.

Fig. 2: Human optimization modeling procedure for SASP

problems.

Fig. 3: An example of the output generated by Example Ex-

traction Agent

Thus, an Extraction Agent AET is developed to distill the

original documents into content pertinent to optimization

modeling {O1, O2, . . . , ON}. In order to conquer the un-

controllability of the LLM responses, we make it strictly fol-

low the modeling mindset of human expert (as illustrated in

Fig.2) with a target-definite prompt, where LLM response is

instructed to consist of five parts: terminological description,

example information, system model, optimization formula-

tion and optimization algorithm. An example of the results

is illustrated in Fig. 3.

Dataset Construction of Graph-RAG: The extracted

content is formulated as a graph structure [19], [27]:

G = (V,E) , (8)

where G denotes the graph dataset, V and E represent nodes

and edges, respectively. Such a structure is chosen due to the

fact that the graph structure is inherently endowed with a hi-

erarchical process, allowing for a natural division of graphs

into sub-graphs to capture the optimization modeling pro-

cedure. Additionally, graphs present superior flexibility for

community clustering and efficient RAG searching. The in-

trinsic logic and hierarchical relationships inherent in graphs

closely align with the optimization modeling procedure em-

ployed by human experts.
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Concretely, a four-layer graph consisting of “System

Model (SM)” layer, “Optimization Formulation (OF)” layer,

“Optimization Algorithm (OA)” layer and “Problem Type

(PT)” layer is constructed. For each Oi, i ∈ [1, . . . , N ],
related content is traced and represented as nodes, which

are subsequently allocated to the corresponding layers. Be-

sides, nodes inherit the type of their respective layers, and

are further assigned a “keyword” attribute generated using

all-MiniLM-L6-v2 [28] to serve as the searching query.

Two types of edges are developed according to the nodes’

belonging entity: Nodes extracted from the same document

are connected with “single document (SD)” edges weigh-

ing 1.0, following the unoriented chain of “PT-SM-OF-OA”.

Nodes extracted from different documents are linked with

“different documents (DD)” edges, with the edge weights

representing their similarity. Specifically, for nodes ni and

nj , the embedding of each node’s key words is generated as:

vi = fe (fk (ni)) , vj = fe (fk (nj)) , (9)

where fe denotes the transformation from natural language

to feature space using text-embedding-3-small [29], and fk
is the value extraction process from the node attribute “key-

word”. Then, cosine similarity sij is applied to calculate the

relevance:

sij =
vi · vj

||vi||×||vi|| . (10)

If sij is greater than ε, a relationship between ni and nj is

established, with sij assigned as the value of “similarity”

attribute.

3.3 Knowledge Searching Using Graph-RAG
Knowledge searching process plays a vital role in Graph-

RAG procedure. Due to the tendency of LLMs to utilize few-

shot learning [30], they prefer to draw on the given examples

for responses. Thus, following formulation (4), we retrieve

the nearest knowledge in G w.r.t. Q sequentially. Further-

more, ATG produces content consistent with SASP termi-

nologies, thus we employ “PT” layer for knowledge search-

ing. For instance, considering a node np, p ∈ [1, . . . , N ], the

relevance of it to P can be determined as:

sep =
fe (P) · fe (fk (np))

||fe (P)||×||fe (fk (np))|| . (11)

Subsequently, we compute the distance from each node np

in the “PT” layer to P , encapsulate the result as a key-value

pair {np : sep}, and aggregate these pairs into a set L:

L ← L ∪
{
np : sep

}
. (12)

Finally, the nodes corresponding to the top-k similarities

in L are selected. We build the knowledge K for AOM by

concatenating the node content connected by “SD” edges

from these selected nodes. In this paper, we set k = 3,

by taking into account the context limitation and knowledge

richness.

4 Experiments

4.1 Experimental Setup
Dataset: We select ten classical SASP problems to eval-

uate the AOM performance, including transmitted beam

pattern matching (Q1), cooperative sensing under ideal

communication conditions (Q2), sensor placement (Q3),

MIMO radar waveform design (Q4), direct positioning de-

termination (Q5), DOA estimation (Q6), interference sig-

nal suppression (Q7), bearing-based localization (Q8), TOA-

based localization (Q9) and TDOA-FDOA-based localiza-

tion (Q10). For each issue, we finely select a number

of documents containing standard modeling approaches to

construct dataset SPAMR. The selected documents con-

tain heuristic modeling strategies and optimization algo-

rithms that can help researchers and LLMs improve the

modeling process. The implementation code and evalu-

ation dataset are available at https://github.com/
advantages/MAG-RAG-for-SASP.

Comparison Methods: To fully evaluate MAG-RAG, we

employ two external benchmarks. Pure MA refers to a pure

agent logic chain for AOM, that the knowledge retrieval pro-

cess of Graph-RAG is replaced by Knowledge Generation

Agent AKG. Pure LLM outputs the overall solutions for

the input signal processing issue Q without any reference

or prior knowledge.

Metrics: Five metrics granted different scores in over-

all 100'are adopted to evaluate the modeling results: Com-

pleteness (30'), Standardization (20'), Correctness (30'), Rel-

evance (10'), Readability (10').

4.2 Performance Evaluation
With the assistance of three human scientists specializing

in SASP domain, we evaluate all the generated AOM results.

The overall performances are shown in Table 1.

Table 1: Overall performance on different base LLMs.

H: Haiku-3 [31], S: Sonnet-3, G3.5: GPT-3.5, G4: GPT-4.

D: pure LLM, G: MAG-RAG, T: pure MA

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

HD 82 62 40 62 73 72 89 90 85 72

HG 70 60 70 75 64 81 61 63 42 46

HT 87 65 0 70 58 61 48 88 92 76

SD 75 21 42 71 68 75 91 91 90 84

SG 62 15 85 82 80 82 85 96 92 91
ST 70 40 35 79 71 80 80 92 87 81

G3.5D 10 40 0 41 53 51 54 30 61 40

G3.5G 75 40 44 49 64 73 46 38 43 46

G3.5T 35 20 45 28 53 28 15 52 61 43

G4D 60 65 60 70 63 75 74 75 72 59

G4G 92 45 60 52 66 80 64 83 70 71

G4T 65 78 60 55 58 81 52 76 80 68

Three human experts are responsible for evaluating Q1-

Q3, Q4-Q6 and Q7-Q10, respectively. From Table. 1, we

discover that there remains a strong tendency in the given

scores, where LLMs with MAG-RAG tend to achieve higher

scores, despite the varied scoring preferences of the human

scientists. Moreover, Sonnet-3 typically achieves better per-

formance on modeling tasks across ten selected SASP prob-

lems. We statistically calculate the distributional properties

of different metrics, and the results are shown in Fig. 4.

From Fig. 4(A), we observe that MAG-RAG achieves bet-

ter results, occupying 67 percent on items getting the high-

est score, while pure MA and pure LLM approaches achieve

only 25 percent and 8 percent, respectively. And in terms
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Fig. 4: Statistical results on overall scores. (A) Frequency of

different methods achieving the highest scores across various

metrics. (B) Frequency of scoring gains (positive, negative

and no gain) obtained with prior knowledge (both pure MA

and MAG-RAG) compared to pure LLM. (C) Frequency of

scoring gains obtained with MAG-RAG compared to pure

LLM. (D) Frequency of scoring gains obtained with pure

MA compared to pure LLM.

of completeness and correctness, MAG-RAG similarly far

outperforms the comparison benchmarks, demonstrating that

the knowledge extracted using a specially designed graph

database has a positive effect on modeling.

In viewing of standardization, relevance and readability,

three methodologies perform similarly. This phenomenon is

caused by the fact that LLM itself performs well in content

formation, and the insertion of prior knowledge primarily

aims to promote the optimization modeling.

From Fig. 4 (B), we conclude that the utilization of prior

knowledge for specific problems can indeed have a positive

impact on modeling results, with the percentage of improved

scores significantly exceeding that of declined scores. And

in the cases where scores decreased, we statistically discover

that four out of the eight samples had reduced scores origi-

nating from Q7. By referencing scientists’ advice on Q7,

directly invoking LLMs usually achieves higher results (89,

91, 54, 74), aligning with the expectations of different base

LLMs. However, with the insertion of extracted prior knowl-

edge, LLMs may additionally introduce incorrect constraints

or miss key steps in algorithms.

In Fig. 4 (C) and (D), we find that LLMs augmented with

prior knowledge generally yield lower performance in terms

of readability and contextual relevance compared to directly

employing LLMs. Considering the auto-regression process

in LLMs, this phenomenon may be attributed to the follow-

ing factors: During the process of knowledge integration,

the attention mechanism in Transformers often struggles to

allocate attention weights appropriately, leading to biases in

comprehension.

Subsequently, we devise experiments to validate the intu-

ition behind the transformation from (2) to (4). Given that

the models utilized are all commercial LLMs with closed

Fig. 5: Statistical results of the scores. (A) Performance

of claude-3-sonnet-20240229. (B) Performance of claude-

3-haiku-202440307

sources, we are unable to precisely determine the probability

distribution of A. Consequently, we have resorted to statisti-

cal methods as a substitute for this purpose. To enhance the

persuasiveness of our findings, we select LLMs from differ-

ent companies, one with superior performance and another

with comparatively weaker capabilities, to evaluate their per-

formance on Q6. Each LLM was tasked with generating ten

responses—five of which were informed by more relevant

corpora as K, and the remaining five by less relevant cor-

pora. In particular, we employ the relevance metric φ defined

as follows to substantiate the mentioned intuition:

φ =
1

C(5, 2)

4∑
i=1

5∑
j=i+1

∑
Ci={Mi,Li,Si}
Cj={Mj ,Lj ,Sj}

d(fe(Cik), fe(Cjk)).

(13)

The results are documented in Table 2. As evidenced, our

hypothesis holds true irrespective of whether the LLM is of

high or low performance. This substantiates the assertion

that the accuracy of reference knowledge exerts a significant

influence on the performance of LLMs.

Table 2: Evaluated performance. S: Sonnet-3, G3.5: GPT-

3.5, G: MAG-RAG, H: high relevance of K towards Q6, L:

low relevance

value of φ relevance of K
SG-H 0.92 0.78

SG-L 0.46 0.35

G3.5G-H 0.67 0.69

G3.5G-L 0.32 0.29

To explore the domain knowledge interpretation capabil-

ity bias towards LLMs, we set up an ablation test. We choose

the weaker model haiku in claude-3 as well as the stronger

model sonnet for comparison. The results are displayed in

Fig. 5.

The results show that sonnet outperforms haiku, partic-

ularly with MAG-RAG, where sonnet achieves significant

gains while haiku’s performance declines sharply. The de-

cline in haiku can be attributed to two main factors. One

is that Haiku’s reliance on prior knowledge leads to inac-

curacies in understanding SASP issues, as it neglects actual

configurations in P and overly depends on extracted knowl-

edge. The other is that Haiku’s modeling logic and algorithm

choices are suboptimal, lacking the ability to filter out noisy

knowledge.
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In conclusion, long-context learning for LLMs remains an

unresolved and underexplored challenge. MAG-RAG, lever-

aging multi-agent chains and graph-based knowledge search,

delivers more reliable modeling results for high-capability

LLMs.

5 Conclusion

In this paper, we propose MAG-RAG approach for AOM,

targeting SASP problems. We transform the AOM process

into consecutive but separate parts, and based on this, a MA

architecture is utilized to assign different sub-tasks into dif-

ferent LLMs. To enhance the efficiency, a graph-based RAG

is adopted, where prior knowledge can be structurally stored

and searched with more performance improvement.

Finally, we note that the proposed MAG-RAG mainly ex-

plores AOM for different SASP problems, while implicit re-

lation between similar optimization algorithms is not suffi-

ciently explored. Moreover, the inherent clustering strat-

egy towards correlative SASP issues that may potentially en-

hance the knowledge searching efficiency is still unexplored.
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