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Harnessing Monotonic Neural Networks for
Performance Prediction and Threshold

Determination in Multichannel Detection
Rui Zhou , Member, IEEE, Wenqiang Pu , Ming-Yi You , and Qingjiang Shi , Member, IEEE

Abstract—Despite extensive research on numerous multichan-
nel detection methods, predicting their performance remains
difficult due to the high dimensionality of raw data and the
complexity of the detection process. To tackle this, we introduce
a special type of neural network designed to predict detection
performance under specific environmental conditions. We utilize
a monotonic neural network (MNN) to develop PdMonoNet,
which ensures that the influence of input parameters on the
output probability of detection is monotonic. This approach
also facilitates the determination of thresholds. We provide a
theoretical analysis of the universal approximation capabilities
and prediction error of the network architectures we employ.
Numerical experiments conducted on both synthetic datasets
and real-world scenarios within the context of multichannel
spectrum sensing demonstrate the effectiveness and robustness of
PdMonoNet in predicting detection performance and determining
thresholds.

Index Terms—Multichannel detection, performance prediction,
threshold determination, monotonic neural network.

I. INTRODUCTION

MULTICHANNEL detection has emerged as a pivotal
technique across a range of disciplines, including com-

munications, radar, acoustics, and medicine [1], [2], [3], [4].
This method utilizes arrays of receivers or multiple spatially
distributed receivers to detect the presence of target signals. In
communications, for instance, multichannel detection is cru-
cial for cognitive radio, allowing secondary users to identify
unoccupied licensed frequency bands [5], [6], [7], [8], [9],
[10]. In radar technology, it enhances detection performance
within distributed radar networks and passive radar systems
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[2], [11]. In the field of acoustics, it is essential for voice
activity detection, helping to differentiate between periods of
speech and silence in audio streams [3], [12], [13]. In medi-
cal applications, multichannel detection facilitates the diagno-
sis, monitoring, and treatment of various disorders, including
epilepsy, sleep apnea, and muscular diseases [4], [14], [15]. The
versatility and increasing applications of multichannel detection
techniques make them a significant and increasingly researched
topic within these fields.

Multichannel detection methods have progressively evolved,
significantly enhancing detection accuracy and reliability while
increasing in sophistication and complexity. The most basic
form, energy detection, measures the cumulative energy level
of signals across all receivers and compares it to a prede-
fined threshold to determine the presence of target signals
[16]. A refined version adapted for spatially distributed re-
ceivers requires each receiver to transmit its binary decision to a
fusion center, thereby reducing communication costs and im-
proving the robustness of detection outcomes. Standard detec-
tion approaches include Logical-OR, Logical-AND, and Major-
ity rules [6], [17]. Energy detection, however, tends to perform
poorly under low signal-to-noise ratio (SNR) conditions and is
susceptible to noise uncertainty [18], [19]. Instead, researchers
have developed more advanced techniques that utilize the cor-
relation structure of received data. For example, the eigen-
value arithmetic-to-geometric mean (AGM) detector computes
a statistic from the ratio of the arithmetic to geometric means
of eigenvalues, using the dispersion of the eigenspectrum as an
indicator of a primary signal’s presence [20]. Other advanced
methods include the eigenvalue-moment-ratio (EMR) detec-
tor [21], the maximum-minimum eigenvalue (MME) detector
[22], the scaled largest eigenvalue (SLE) detector [23], and
the generalized likelihood ratio test (GLRT) detector [24]. The
recent integration of machine learning methods in multichannel
detection has enabled the identification of complex and dy-
namic signal patterns, drastically improving detection capabili-
ties. Techniques such as support vector machines [25], random
forests [26], and convolutional neural networks [4], [15], [27]
have demonstrated enhanced accuracy and adaptability across
diverse scenarios and SNR conditions. As technological ad-
vancements continue, the development of increasingly intricate
multichannel detection methods remains a vibrant and dynamic
field of research [13], [28], [29].
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While extensive research has focused on developing sophis-
ticated multichannel detection methods, the theoretical foun-
dations for measuring their detection performance have lagged
behind [25], [30], [31], [32]. Theoretical analyses of even basic
detection methods often rely on ideal conditions, overlooking
practical variables that significantly affect performance in real-
world scenarios [33], [34]. For example, standard energy de-
tection assumes perfect knowledge of noise power and a large
sample size [30], which are rarely met in practice. It may
result in suboptimal thresholds and unreliable detection perfor-
mance [33]. The absence of a feasible measurement framework
presents a greater challenge for evaluating complex methods,
such as those involving machine learning and deep learning,
particularly in diverse working environments [25], [31], [32].
Without adequate measurement tools, optimizing the param-
eter setting of advanced detection techniques, like deploying
the receivers or adjusting directional antennas’ orientations, is
challenging and often confined to simpler methods like en-
ergy detection [35]. Therefore, Monte Carlo simulation has
served as a popular and convenient method for assessing the
performance of multichannel detection methods [22], [24], [36].
This technique generates a vast amount of random data for
the scenario under study and evaluates detection performance
empirically. However, these simulations are computationally
intensive and require numerous iterations to achieve statistically
significant results, particularly for complex detection methods
and extensive networks. Furthermore, Monte Carlo simulations
function as a black-box approach, providing no mathemati-
cal relationships that govern detection performance [37]. This
opacity restricts deeper insights into optimal deployment and
settings for multichannel detection methods.

Consequently, there is a pressing need to develop models or
learning approaches that can efficiently and accurately gauge
the performance of multichannel detection methods. Recent
research increasingly applies machine learning to predict the
performance of methods in various fields, such as positioning
uncertainty [38], [39] and the Cramér-Rao bound [40], as well
as to estimate parameters [41]. These studies have demon-
strated remarkable accuracy and efficiency. Accordingly, the
primary objective of this paper is to predict the probability of
detection and determine thresholds in multichannel detection
using neural networks, with spectrum sensing serving as a
case study. The main contributions of this paper are outlined
as follows:
• We first examine the challenges of the prevalent use of

Monte Carlo simulations for assessing detection perfor-
mance and thresholds. A theoretical analysis of the the
required number of Monte Carlo simulations for achieving
a desired reliability level is presented. Our findings suggest
that an extensive number of simulations are necessary to
obtain a precise estimate of detection performance, partic-
ularly when the probability of false alarms is low.

• To effectively predict detection performance, we initially
introduce PdNet, a preliminary method that utilizes a
classical multilayer perceptron (MLP) neural network.
However, the MLP architecture cannot directly accommo-
date the inherent monotonic relationships between system

parameters and detection performance. To address this
limitation, we propose PdMonoNet, a novel approach that
employs a monotonic neural network (MNN). Addition-
ally, we investigate the use of both MLP and MNN models
in determining the necessary thresholds for multichannel
detection, which we refer to as ThreshNet and Thresh-
MonoNet, respectively.

• In theoretical terms, we discuss the universal approxima-
tion capabilities of our proposed PdMonoNet approach
and its prediction accuracy concerning unseen data points.
The results indicate that PdMonoNet can universally ap-
proximate the desired detection performance function un-
der mild conditions, with bounded prediction errors at
unseen data points.

• Numerical experiments on both synthetic and real-world
datasets are conducted to evaluate our proposed methods
for performance prediction and threshold determination in
multichannel detection. Our results demonstrate consistent
monotonic behavior and robustness against unseen data
points, even in scenarios involving outliers.

This paper is structured as follows. Sec. II introduces the
system model for multichannel detection and discusses the chal-
lenges associated with predicting the detection performance.
Sec. III describes the classical Monte Carlo simulation tech-
nique and introduces the naive PdNet approach. In Sec. V,
we introduce PdMonoNet, which utilizes a MNN to measure
the probability of detection. This section also includes a the-
oretical analysis of the PdMonoNet’s universal approximation
properties and its prediction accuracy for unseen data points.
The approach for determining decision thresholds using the
MNN is detailed in Sec. V. Sec. VI provides numerical exper-
iments to evaluate the performance of the proposed prediction
and determination methods. Finally, Sec. VII summarizes the
conclusions of the study.

In this paper, we use lowercase letters (e.g., x) to denote
scalars, bold lowercase letters (e.g., x) to denote vectors, and
bold uppercase letters (e.g., X) to denote matrices. The set
of real numbers is represented by R, and the set of complex
numbers by C. The Frobenius norm and p-norm of a matrix are
denoted by ‖X‖F and ‖X‖p, respectively, and the transpose of
a matrix is represented by XT . The p-norm of a vector x is
denoted by ‖x‖p. The partial derivative is represented by ∂(·),
the indicator function by 1(·), and the absolute value of a scalar
by | · |.

II. SYSTEM MODEL

In this section, we briefly introduce the system model for
multichannel detection and subsequently discuss the challenges
in predicting the detection performance of detection methods.

A. Multichannel Detection

Multichannel detection is a widely utilized technique in var-
ious disciplines, including communications, radar, acoustics,
and medicine. Its primary objective is to detect the presence of
a target signal through the collaboration of multiple receivers.
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The problem of multichannel detection is typically formed as
a classical hypothesis testing problem, defined as follows:

H0 : xi = ni, H1 : xi = si + ni, (1)

where xi ∈ C
L is the received signals of L receivers at time

index i, ni ∈ C
L is noise at time index i, si ∈ C

L signifies the
target signal arriving at L receivers at time index i. The core
task is to determine whether the target signal s is present in the
received signal x.

Various methods have been developed to address Problem
(1), typically assuming that the signal is uncorrelated with
Gaussian noise [21], [22], [24]. In general, these methods obey
the following decision rule:

ξ = T (X)
H1

> rless
H0

γ, (2)

where T (·) is a function that calculates the test statistic ξ
from N received samples, collected as X= [x1,x2, . . . ,xN ] ∈
C

L×N , and the γ is a predefined threshold to determine the
presence of a target signal. More specifically, the target signal is
considered present if T (X)≥ γ, and absent if T (X)< γ. The
energy detector compute the test statistics simply as T (X) =
‖X‖2F [30]. The machine learning-based detectors employ neu-
ral networks to serve as the test statistic function T (X) [25],
[31], [32], introducing a more sophisticated approach. This
remains an active area of research with continuous development
of novel detection methods.

B. Difficulties of Predicting Detection Performance

Once function T (·) has been determined, a pertinent question
arises regarding its performance. Specifically, assuming the
presence of a target signal, and with all environmental param-
eters such as sample rate, the signal-to-noise ratio (SNR) of
receivers, etc, represented as θ, we aim to obtain the probability
of detection function, denoted as �(θ). The typical approach
involves modeling the theoretical distribution of the obtained
test statistics, p(ξ |θ), and generally consists of two steps:

1) Threshold Determination: Obtain the threshold γ by
setting the desired probability of false alarm (PFA). This
is calculated as:

γ = argmin
ξ

{∫ ∞

ξ

p(ξ̃ | θ̃)dξ̃ ≤ PFA

}
, (3)

where θ̃ denotes an environment parameter that similar
to θ but with the primary signal absent at the receivers.

2) Detection Probability Prediction: Predict the probabil-
ity of detection as:

�(θ) =

∫ ∞

γ

p(ξ |θ)dξ. (4)

However, obtaining the distribution of ξ is a challenging task.
Specifically, the computation of p(ξ |θ) is mathematically ex-
pressed as:

p(ξ = ξ0 |θ) =
∫

1 [T (X) = ξ0] p(X |θ) dX, (5)

where 1(·) is the indicator function, p(X |θ) is the conditional
distribution of X given θ. The difficulties in obtaining this
distribution are considered intractable for the following reasons:

1) High-dimensionality of X: The dimensionality of X is
usually very larger. This aspect complicates the integra-
tion detailed in (5), making it challenging to calculate.

2) Complexity of T (·): Many detection methods involve
complex data processing within T (·). For instance, the
GLRT detector [24] requires solving constrained non-
convex maximum likelihood estimation problems for
each evaluation of T (·), while deep learning approaches
involve multiple layers of data processing. This complex-
ity makes it nearly impossible to precisely identify the set
of X that results in T (X) = ξ0.

According to the above discussions, we see that deriving an
exact function to predict detection performance, �(θ), is an
intractable challenge. There is limited existing research that
addresses this issue. The few studies that do exist are typically
limited to detectors employing simple transformations, such
as T (X) = ‖X‖2F in energy detectors when N is sufficiently
large [30]. Alternatively, some studies approximate detection
performance using advanced statistical tools, such as random
matrix theory (RMT) [21], [30]. But these approximations are
typically tailored to specific detection methods and necessitate
considerable additional effort.

Understanding �(θ) is crucial not only for evaluating the
performance of existing detectors but also for advancing re-
search in areas like optimizing receiver deployment to maxi-
mize detection capabilities. In the subsequent section, we will
first revisit the naive approach of estimating �(θ) using the
Monte Carlo method. Then we will introduce our preliminary
approach using neural networks to approximate this function.
The ensuing discussion will focus on the application of these
methods in spectrum sensing as a case study.

III. THE PRELIMINARY APPROACHES

A. Preliminary Approach I: Monte Carlo Simulation

Rather than deriving a mathematical expression for detecting
performance �(θ), the majority of the literature relies on Monte
Carlo experiments to empirically simulate the performance of
detectors of interest. This approach typically involves two steps:

1) Threshold Approximation: Generate K realizations of
received pure noise {Xk}Kk=1 under θ̃. Estimate the
threshold γ̂ by applying the desired false alarm proba-
bility PFA, calculated as:

γ̂ = argmin
x

{∑K
k=1 1 (T (Xk)≥ x)

K
≤ PFA

}
, (6)

2) Detection Probability Evaluation: Generate M realiza-
tions of received signals {Xm}Mm=1 using the environ-
ment setting θ, and then evaluate �(θ) as:

�̂(θ) =

∑M
m=1 1 (T (Xi)≥ γ̂)

M
. (7)
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Though direct and convenient, the Monte Carlo simulation
method requires sufficiently large K and M to produce reliable
results, as detailed in the following facts: Fact 1 and Fact 2.

Fact 1: Given γ̂ obtained from (6) using K realizations to
match a target false alarm probability PFA, the 95% confidence
interval for PFA(γ̂) can be approximated as follows:

PFA ± 1.96×

√
P̃FA(1− P̃FA)

K
, (8)

where P̃FA = (PFA ×K + 0.5× 1.962)/(K + 1.962).
Proof: Consider the empirical estimate of the false alarm

rate, denoted by P̂FA = x
K , where x follows a binomial dis-

tribution, x∼ Binomial(K,PFA(γ̂)). Given that the threshold
γ̂ is chosen such that P̂FA = PFA, the confidence interval for
PFA(γ̂) can be determined using the Agresti–Coull method
[42].

Fact 2: Given �̂(θ) obtained from (7) using M realizations,
the expected absolute difference from the true �(θ) can be
expressed as follows:

E

[∣∣∣�̂(θ)− �(θ)
∣∣∣]≈

√
2

π

√
�(θ)(1− �(θ))

M
. (9)

Proof: Consider the empirical estimate of �(θ) given
by �̂(θ) = x

M , where x follows a binomial distribution, x∼
Binomial(M, �(θ)). As M increases, the distribution of �̂(θ)

approximates a normal distribution, N (�(θ), �(θ)(1−�(θ))
M ), in

accordance with the central limit theorem [43]. This approxi-
mation leads to the formulation in (9).

For practical application, to accurately estimate a low PFA

such as 1%, a significantly large K is necessary to narrow
the confidence interval around PFA. For instance, aiming for
a margin of error of 0.2% around PFA requires K ≈ 10, 000.
Similarly, even fed with an accurate threshold γ, to ensure
that �(θ) is estimated within a margin of error of 0.02 at
�(θ) = 0.5, M ≈ 400 is needed. We present a straightforward
example in Fig. 1, which uses the same parameter settings as
those in Fig. 4(a). It is evident that the probability of detection
results are prone to fluctuation when K = 1, 000 and M = 100.
Even when K and M are increased to 10, 000 and 1, 000,
respectively, fluctuations remain observable. The only scenario
where a smooth curve is observed is when K = 100, 000 and
M = 10, 000.

B. Preliminary Approach II: MLP

In recent years, neural networks have revolutionized the field
of predictive analytics due to their ability to model complex and
nonlinear relationships within data. Recent research increas-
ingly applies machine learning to predict the performance of
methods in various fields, such as positioning uncertainty [38],
[39] and the Cramér-Rao bound [40], as well as to estimate
parameters [41].

In response to these advancements, an MLP neural network
can be directly applied to predict detection performance. The
methodology involves several key steps. For example, a dataset
D as outlined in Apx. A is generated. Subsequently, an MLP

Fig. 1. An example of the probability of detection obtained through Monte
Carlo experiments.

consists of an input layer, multiple hidden layers, and an output
layer, all fully connected are employed to fit the generated
dataset D. Each layer sequence comprises a linear transfor-
mation followed by batch normalization and a ReLU activa-
tion function. The selection of the ReLU activation function is
due to its computational simplicity and empirical effectiveness,
which have been well-documented across various tasks [44].
The multi-layer structure allows it to effectively learn nonlinear
functions. For simplicity, we refer to this method as PdNet.
Specifically, PdNet is designed to transform an input feature
space characterized by a 14-dimensional vector θ1 into a scalar
output.

C. Limitations of Preliminary Approaches

Both Monte Carlo simulation and PdNet methods exhibit
limitations that may hinder their practical application in real-
world scenarios.

For Monte Carlo simulation method, it necessitates a suf-
ficiently large number of simulations (denoted as K and M )
to achieve reliable results. The synthetic generation of signal
X and evaluation of T (X) require significant computational
resources, making the repeated execution of these procedures
time-consuming. Additionally, the process of deriving Monte
Carlo results is often treated as a black box, any new environ-
ment parameter requires independent new simulations.

In contrast, using MLP circumvents the need for repetitive
experiments and leverages auto-gradient tools to access its gra-
dients. Nonetheless, it inherits several limitations from tradi-
tional neural network architectures:

1) Monotonicity: MLP models often fail to ensure the
monotonicity of their outputs. For example, the literature
consistently shows that detection probability should not
decrease as SNR increases, assuming all other parameters

1As detailed in Apx. A, here θ ∈ R
14 comprises the baud rate of the

primary signal, sample rate, probability of false alarm, observation time, and
the SNR for up to 10 nodes.
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TABLE I
THE EMPIRICAL PARTIAL CORRELATION IN D

Feature Notation Coeff. 95% CI p-value

Baud Rate fb 0.04 [0.04, 0.04] < 0.001
Sample Rate fs 0.18 [0.18, 0.18] < 0.001

Prob. of False Alarm PFA 0.23 [0.23, 0.23] < 0.001
Observation Time t 0.03 [0.03, 0.03] < 0.001
SNR (first node) SNR 0.15 [0.15, 0.15] < 0.001

are constant. However, traditional MLP models do not
guarantee this monotonicity.

2) Generalization Ability: The performance of our pro-
posed PdNet heavily relies on the training dataset and
tends to degrade with unseen data.

3) Sensitivity to Outliers: MLP generally exhibits a lack
of robustness to outliers.

In the following section, we introduce a novel method named
PdMonoNet, which is based on monotonic neural networks.
This approach is expected to outperform PdNet in these areas.

IV. PDMONONET

In this section, we introduce the PdMonoNet, a novel ap-
proach for predicting the probability of detection that leverages
the monotonic relationships in the training samples. We will
first review the empirical evidence supporting the monotonic
relationships. Subsequently, we will detail the architecture of
the PdMonoNet and then explore some theoretical aspects.

A. Empirical Analysis of Partial Correlations in D
In θ, factors such as SNR and probability of false alarm

are known to strongly correlate with detection performance,
whereas the influence of other factors, such as sample rate and
baud rate, is less apparent. Identifying these significant factors
is a critical initial step in modeling the detection performance
of practical multi-channel detection systems, a topic that has
received insufficient attention in the literature. The subsequent
partial correlation test demonstrates that all factors included in
θ exhibit a positive partial correlation with the label y.

Given that the feature vector θ ∈ R
14 and the label y ∈ R,

direct computation of empirical correlations between these vari-
ables is not feasible. Therefore, we opted to perform a partial
correlation test [45] for each feature in relation to the labels.
This method is commonly employed in empirical research to
isolate direct relationships between variables of interest, par-
ticularly when such relationships might be obscured or altered
by extraneous variables.

The process involves using linear regression to mitigate the
influence of confounding variables on the two variables of inter-
est. After adjusting for these influences, the Pearson correlation
coefficient is computed from the residuals.2 The results are
presented in Table I, where each reported p-value tests the null
hypothesis that the corresponding partial correlation is zero.

2The partial correlations are calculated using partial_corr function in
pingouin package [46].

The analysis reveals that all variables within the feature vec-
tor θ demonstrate positive partial correlations with the label
y in dataset D. The extremely low p-values (less than 0.001)
strongly suggest that these positive correlations are statistically
significant and unlikely to have occurred by chance.

B. Architecture of PdMonoNet

We now possess empirical evidence indicating that all fea-
tures in θ exhibit positive monotonic relationships with the
label y. Integrating this prior knowledge into the MLP archi-
tecture detailed in Sec. III-B presents significant challenges.
The inherent structure of the MLP does not readily support
the direct inclusion of monotonic information. One alterna-
tive involves the addition of regularization terms to the loss
function during model training. Examples of this approach in-
clude penalizing negative gradients [47], [48] or heuristically
penalizing model non-monotonicity across uniformly sampled
points within the domain during training [49]. However, these
regularization strategies tend to be computationally intensive
and do not guarantee monotonicity across the entire domain,
particularly when the test data samples fall outside the training
dataset.

An alternative approach involves the development of a spe-
cialized class of neural networks designed to inherently ensure
monotonicity. Examples include constrained architectures such
as deep lattice networks [50] and networks with all-positive
weights [51]. While these models are inherently monotonic,
they often suffer from limited expressiveness or degraded per-
formance due to their complexity. The Unconstrained Mono-
tonic Neural Network [52] achieves guaranteed monotonicity
by ensuring that the derivative function remains strictly pos-
itive, although its reliance on numerical integration for both
forward and backward processes renders it impractical for high-
dimensional scenarios.

Recently, the development of a Lipschitz monotonic neural
network, as described in [53], offers potential for capturing the
inherent monotonicity in the data. This innovative approach is
elegant both theoretically and practically, offering high expres-
siveness without the complexity of previous methods. In the
following section, we will describe the architecture of these
monotonic neural networks in detail.

We present the general architecture of the proposed mono-
tonic neural network in Fig. 2, where λ= λ1. This structure
builds upon the framework initially described in [53], incorpo-
rating a Sigmoid activation function in the output layer to map
the output to a probability between 0 and 1. The architecture is
developed through the following three sequential steps:

1) Lipschitz Neural Network [54]: As detailed in Apx. B
and denoted by g̃(θ), this network utilizes a Lipschitz
constraint with a constant λ.

2) Basic Lipschitz Monotonic Neural Network [53]: This
consists of g̃(θ) combined with a residual connection, and
is denoted by

g(θ) = g̃(θ) + λTθ. (10)

3) Overall Monotonic Neural Network: This network in-
cludes g(θ) followed by a Sigmoid activation function,
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Fig. 2. Used monotonic neural network architecture for modeling the
probability of detection.

which preserves the monotonic relationships, and is rep-
resented as

f(θ) = σ(g(θ)). (11)

The architecture of the Lipschitz neural network, g̃(θ), can be
designed similarly to the MLP discussed in Sec. III-B. As noted
in [53], g(θ) qualifies as a monotonic neural network because∣∣∣ ∂g̃
∂θi

∣∣∣≤ λ, ensuring that ∂g
∂θi

= ∂g̃
∂θi

+ λ falls within the range

[0, 2λ]. This architecture is expected to be more robust and
to exhibit greater generalization capabilities than the standard
MLP structure, as it is designed to be monotonic and is subject
to a bounded Lipschitz constraint. The monotonicity constraint
acts as prior information that enhances generalization. The
bounded Lipschitz constant limits the maximum rate at which
the model’s output can change with respect to its input, thereby
reducing sensitivity to outlier data points [55].

The monotonic relationships between the parameters and
detection performance may not always be strict. For instance,
irrespective of the number of samples utilized, the detector
might still fail due to a phenomenon known as the SNR wall
[18], [56], [57]. The proposed PdMonoNet is capable to adapt to
such scenarios by allowing the gradient to be zero, thus accom-
modating instances where increasing the number of samples
does not enhance performance.

Remark 3: The monotonic relationships between θi and f(θ)
can be adjusted flexibly by varying the λi values. For exam-
ple, setting λi =−λ results in ∂g

∂θi
= ∂g̃

∂θi
− λ, which lies in

the range [−2λ, 0], ensuring a non-increasing relationship be-
tween f(θ) and θi. Conversely, setting λi = 0 maintains ∂g

∂θi
=

∂g̃
∂θi

, spanning [−λ, λ] and thus imposing no monotonicity
constraints.

C. Approximation Error Analysis

Note that our used network is f(θ) = σ(g(θ)), where g(θ) =
g̃(θ) + λTθ. Then the universal approximation property of
g(θ) is obviously inherited from g̃(θ), c.f. Theorem 10 in
Apx. B, and summarized in the following corollary.

Corollary 4: The network g(θ), as specified in (10), is a uni-
versal approximator for any non-decreasing function processing
a Lipschitz constant not exceeding 2λ.

The following Proposition 5 demonstrates that the net-
work outlined in (11) can universally approximate the desired
probability of detection, provided a mild condition is met.
Specifically, this condition requires the gradient of the target

function to vanish as the probability of detection approaches 0
or 1.

Proposition 5: The neural network f(θ), as specified in (11),
is a universal approximator for an non-decreasing function �(θ)
(�(θ) ∈ [0, 1]) if it satisfies∥∥∥∥∂�(θ)∂θ

∥∥∥∥
∞

≤ 2λ�(θ)(1− �(θ)), ∀θ. (12)

Proof: Since σ is a deterministic output layer, the approxi-
mation capability of f(θ) primarily hinges on that of g(θ). The
central inquiry then concerns whether g(θ) can effectively ap-
proximate σ−1(�(θ)). The derivative of σ−1(�(θ) with respect
to θ is given by∥∥∥∥∥

∂
[
σ−1(�(θ))

]
∂θ

∥∥∥∥∥
∞

=

∥∥∥∥ 1

�(θ)(1− �(θ))

∂�(θ)

∂θ

∥∥∥∥
∞

≤ 2λ.

(13)

It demonstrates that the σ−1(�(θ)) is a non-decreasing function
with a Lipschitz constant no greater than 2λ. Consequently,
g(θ) serves as a universal approximator for σ−1(�(θ)) accord-
ing to Corollary 4, which in turn establishes f(θ) as a universal
approximator for �(θ).

The following Proposition 6 provides an alternative perspec-
tive on the approximation capabilities of the model without pre-
supposing the vanishing gradient of the ground truth function.
It posits that the ideal approximation error is inversely propor-
tional to the value of the selected λ. This insight underscores
the importance of the parameter λ in minimizing approximation
errors, highlighting that as λ increases, the error decreases,
thereby improving the model’s accuracy in approximating the
target function.

Proposition 6: The neural network f(θ), as specified in (11),
if capable of approximating any non-decreasing function �(θ)
(�(θ) ∈ [0, 1]) that processes a Lipschitz constant β (where 0<
β < λ

2 ) under

|f(θ)− �(θ)| ≤ 1

2
− 1

2

√
1− 2β

λ
, ∀θ. (14)

Specifically, if λ	 β, then |f(θ)− �(θ)|� β
2λ .

Proof: Define �̃(θ) := [�(θ)]1−ε
ε , where ε=

1
2 − 1

2

√
1− 2β

λ is a notably small quantity (note that

lim β
λ→0+

ε= β
2λ ). Since �̃(θ) retains the Lipschitz constant β

from �(θ), we have∥∥∥∥∥
∂�̃(θ)

∂θ

∥∥∥∥∥
∞

≤ β = 2λε(1− ε)≤ 2λ�̃(θ)(1− �̃(θ)). (15)

According to aforementioned Corollary 4, f(θ) can uni-
versally approximate �̃(θ). Coupling this with the fact that∣∣∣�̃(θ)− �(θ)

∣∣∣≤ ε, we conclude |f(θ)− �(θ)| ≤ ε.
We validate Proposition 6 using a toy example. A dataset of

1,000 samples is generated, where the feature x is uniformly
sampled from [−2, 2], and the label is computed as �(x) =
2x+ 0.5, truncated to [0, 1]. The target function has a Lipschitz
constant of β = 2. The network is trained for 10,000 epochs,
with the process repeated 100 times for each λ. The final ap-
proximation errors are compared to the theoretical bounds in
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Fig. 3. Numerical validation of the theoretical analysis. The PdMonoNet model is configured with an input dimension of 1 and hidden layer sizes [8, 16,
8, 16].

Proposition 6. As shown in Fig. 3(a), the error decreases as
λ increases and remains below the theoretical upper bound.
However, larger λ empirically increases training costs, requir-
ing more epochs for convergence. To address this, sufficient
training epochs must be ensured when using a large λ. Alterna-
tively, λ can be increased incrementally, with the model trained
for a limited number of epochs at each step until the training
loss stabilizes.

D. Prediction Error Analysis

Consider the network f̂ , a well-trained PdMonoNet using
the dataset D that utilizes the architecture described in (11).
Our objective is to quantify the prediction error when this
network is applied to an unseen data sample. We postulate
that the relationship between features and labels in D can be
modeled as yi = �(θi) + ni, where � represents the true under-
lying relationship the neural network aims to learn, and ni is
the independent measurement noise. Leveraging the beneficial
properties of Lipschitz functions, we can establish a bounded
prediction error for this scenario.

Proposition 7: Given that � is function with a Lipschitz
constant β, the prediction error of f̂ at an unseen feature point
θt is bounded by∣∣∣f̂(θt)− �(θt)

∣∣∣≤ min
i=1,...,|D|

{
(2λ+ β) ‖θt − θi‖1 +

|�(θi)− yi|︸ ︷︷ ︸
measurement error

+
∣∣∣f̂(θi)− yi

∣∣∣︸ ︷︷ ︸
training error

}
(16)

Proof: See Apx. C.
Proposition 7 is also validated using the toy example. The

PdMonoNet model is trained on the same dataset used in
Fig. 3(a), but with added Gaussian noise. A test dataset is
then generated following the same procedure. The trained
PdMonoNet is applied to this test dataset, and the prediction
errors on the unseen data are recorded and compared to the
theoretical bounds established in Proposition 7. As shown in
Fig. 3(b), the observed prediction errors consistently fall below
the theoretical bounds.

The Proposition 7 delineates that the prediction error bounds
can be decomposed into three components: the distance

between the unseen feature and any feature in D, the mea-
surement error arising during the data sampling phase, and the
training error incurred during the training phase. Technically,
while the fitting error is quantifiable, the measurement error
remains unknown but can be mitigated by increasing the num-
ber of Monte Carlo simulations, as discussed in Fact 1 and
Fact 2.

Leveraging the monotonic nature of PdMonoNet, we can
establish an alternative form of prediction error bound, as de-
scribed in Proposition 8.

Proposition 8: Suppose that � is a non-decreasing func-
tion. For an unseen feature point θt, if there exist θl,θu ∈
D such that θl ≤ θt ≤ θu, the prediction error of f̂ at θt is
bounded by

∣∣∣f̂(θt)− �(θt)
∣∣∣

≤ |yl − yu|+max
{
|�(θu)− yu|︸ ︷︷ ︸
measurement error

+ |f̂(θl)− yl|︸ ︷︷ ︸
training error

,

|�(θl)− yl|︸ ︷︷ ︸
measurement error

+ |f̂(θu)− yu|︸ ︷︷ ︸
training error

}
(17)

Proof: See Apx. D.
Proposition 8 is also validated using the toy example. The

PdMonoNet model is trained on the dataset generated simi-
larly to the one in Fig. 3(a), with added Gaussian noise, but
excluding data samples with features in the range [−0.01, 0.01].
This process is repeated 100 times, each with a newly gen-
erated training dataset. The maximum prediction error within
the excluded interval [−0.01, 0.01] is recorded and compared
to the theoretical bounds provided in Proposition 8. As shown
in Fig. 3(c), the observed prediction errors consistently remain
below the theoretical bounds.

This proposition illustrates that, with controllable measure-
ment error and known training error, the prediction error for any
unseen point θt within the interval [θl,θu] can be bounded by
the term |yl − ym|. This characteristic is particularly beneficial
as it permits sparse sampling when the outputs change smoothly
over certain ranges.

Another critical aspect is the quantification of in-sample
prediction error. During the training process, the following in-
equality holds for any (θi, yi) ∈ D, as derived using the triangle
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inequality:∣∣∣f̂(θi)− �(θi)
∣∣∣︸ ︷︷ ︸

in-sample prediction error

≥
∣∣∣f̂(θi)− yi

∣∣∣︸ ︷︷ ︸
training error

− |�(θi)− yi|︸ ︷︷ ︸
measurement error

. (18)

The training error is directly observable during the training
process. To estimate the measurement error, which depends
on the distribution of the dataset, we provide its numerical
approximation through the following Proposition 9.

Proposition 9: Assuming that the true label distribution in
dataset D adheres to the probability density function p(y),
the average measurement error of D, denoted by m(D) =
1

|D|
∑

(θi,yi)∈D |�(θi)− yi|, can be approximated by:

m(D)≈
∫ 1

0

√
2

π

√
x(1− x)

M
p(y)dy. (19)

Proof: This is straightforwardly derived from Fact 2.
Given that the components of the inequality (18) can be

numerically determined during the training process, they pro-
vide a real-time estimate of the lower bound for the in-sample
prediction error. This estimate may serve as a useful indica-
tor for determining an appropriate stopping point for training,
such as when the calculated error bound approaches or falls
below zero.

E. Computational Complexity Analysis

In this subsection, we provide a detailed analysis of the com-
putational complexity of our proposed PdMonoNet and com-
pare it with the traditional Monte Carlo simulation approach.

The computational cost of PdMonoNet is determined by
its architecture, as described in Section IV-B. Assuming the
input dimension is I and there are D hidden layers, with
hi neurons in the i-th layer, the computational complexity of
an inference process through the entire network is given by
O(I + Ih1 +

∑D−1
i=1 hihi+1 + hD). In comparison, the Monte

Carlo simulation approach, detailed in Section III-A, primarily
incurs computational costs from evaluating the test statistics,
T (X), as indicated in Equations (6) and (7), repeated K +M
times. Assuming the computational cost for a single evaluation
of T (X) is O(S), the total computational cost of a single
evaluation of the probability of detection is O((K +M)S).

It is important to note that even using a relatively sim-
ple method such as energy detection, where T (X) = ‖X‖2F ,
the computational cost is already O(NL). For more complex
methods like the GLRT approach, the cost significantly ex-
ceeds NL due to iterative matrix eigenvalue decomposition
operations [24].

The computational burden of the Monte Carlo method is
particularly notable, as the parameters K, M , and L typically
take on large values to produce reliable results. In contrast,
once trained, our proposed PdMonoNet can efficiently generate
results. Its computational complexity increases linearly with the
number of layers (D) and feature dimensions (I), which are
generally much smaller than K or M . This efficiency offers a
significant advantage of our PdMonoNet over traditional meth-
ods in terms of computational expense.

TABLE II
THE EMPIRICAL PARTIAL CORRELATION IN DATASET T

Feature Notation Coeff. 95% CI p-value

Sample Rate fs -0.88 [-0.88, -0.88] < 0.001
Prob. of False Alarm PFA -0.14 [-0.15, -0.14] < 0.001

Observation Time t -0.78 [-0.79, -0.78] < 0.001
Number of Receivers L 0.61 [0.61, 0.62] < 0.001

V. APPLYING MONOTONIC NEURAL NETWORK TO

THRESHOLD DETERMINATION

In this section, we explore another application of the mono-
tonic neural network: estimating the threshold γ. Although the
threshold primarily indicates the probability of a false alarm
and does not directly affect the overall detection performance,
it remains essential for detecting the presence of the primary
signal in each task. The theoretical calculation of this threshold,
as shown in (3), presents significant challenges, as discussed
in Sec. II-B. Typically, the threshold is estimated using Monte
Carlo simulation (see (6)), a method that is computationally
expensive. Therefore, mirroring our approach to predicting the
probability of detection, we opt to estimate the threshold using
a monotonic neural network.

A. Dataset Generation and Processing

The required dataset for threshold estimation can be collected
during the data generation process described in Apx. A. Since
the features related to primary signal generation do not influ-
ence the threshold estimation (noting that threshold estimation
occurs when the primary signal is absent), we collect features
such as the sampling rate of the receivers, the probability of
false alarm, the observation time, and the number of receivers.
Because thresholds are typically very small positive numbers,
we use their log-scaled values as labels. This results in a dataset
specifically for threshold estimation, denoted as T .

B. Architecture Design

We also perform an empirical analysis of the partial correla-
tions between features and labels in the dataset T . As detailed
in Table II, with the exception of the number of receivers,
all other features exhibit negative partial correlations with the
thresholds. Consequently, as discussed in Remark 3, we adapt
the architecture of the monotonic neural network shown in
Fig. 2. We remove the last Sigmoid output layer and set λ=
[−λ,−λ,−λ, λ]T . For convenience, we have named the MNN-
based approach for estimating thresholds as ThreshMonoNet,
and the MLP-based approach as ThreshNet.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct experiments to evaluate the per-
formance prediction and threshold determination for multichan-
nel detection problems. Firstly, we demonstrate the predictive
capabilities of our proposed PdMonoNet on both multichan-
nel energy detection and multichannel GLRT detection. Sub-
sequently, we illustrate the threshold determination capabilities
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TABLE III
COMPARISON OF DIFFERENT METHODS WITH THEIR CAPABILITIES

Method Monotonicity Advantages Disadvantages Most Applicable Tasks

APMNN Full Guarantees global monotonicity
Limited flexibility and
approximation ability

Simple scenarios requiring strict
monotonic relationships

RBF None Efficient in low-dimensional spaces
Poor scalability to high dimensions;

sensitive to the choice of kernel
parameters

Function approximation, regression,
and classification in

low-dimensional spaces

ELM None
Extremely fast training due to

closed-form solution
No monotonicity guarantee; limited
generalization for complex problems

Scenarios requiring fast training and
inference

PdNet None High efficiency No monotonicity guarantee
Scenarios without monotonic

relationships

PdMonoNet Flexible Supports partial monotonicity May underperform if λ is too small
Complex scenarios with mixed
monotonic and non-monotonic

relationships

of our proposed ThreshMonoNet for multichannel GLRT detec-
tion. Finally, we validate our findings through the application
of multichannel spectrum sensing on Software-Defined Radio
(SDR) devices.

To ensure a fair comparison between our proposed models
and the benchmarks, we minimize the influence of hidden layer
sizes and the learning process. Suitable hidden layer sizes are
identified through preliminary experimental trials, and the neu-
ral networks are trained using the Adam optimizer [58] with
reduced learning rates.

A. Comparison on Performance Prediction

In this part, we conduct the performance comparison between
our proposed PdNet and PdMonoNet models, focusing on their
ability to predict the probability of detection. The evaluation
involves two widely-used multichannel detection methods: the
energy detector and the GLRT detector. For benchmarking
purposes, we include the all-positive weight monotonic neu-
ral network (APMNN) [51], the radial basis function (RBF)
neural network [59], and the extreme learning machine (ELM)
[60] in our comparison. Table III summarizes the advantages
and disadvantages of each method, providing a comprehensive
comparison.

1) Multichannel Energy Detection: The detection perfor-
mance of multichannel energy detection can be described using
mathematical expressions. For instance, when an equal gain
combination scheme is applied, the corresponding detection
performance expression for multichannel energy detection is
given as [56, Equation (8)]:

PD =Q

⎛
⎝Q−1(PFA)−

√
N
2L

∑L
l=1 γl√

1
L

∑L
l=1(1 + 2γl)

⎞
⎠ , (20)

where Q(x) =
∫ +∞
x

1√
2π

e−
t2

2 dt and γl > 0 represents the SNR
at the l-th receiver.

To generate the training dataset, we create 10,000 samples
featuring PFA and γl for two receivers. Here, PFA is uniformly
selected from 0.1% to 2.0%, and γ1 and γ2 range independently
between -20 dB and 0 dB. The labels are initially computed
theoretically using (20) and then refined through Monte Carlo

sampling over 100 experiments to replicate the dataset genera-
tion process for D.

In this part, the PdNet model is configured with hidden layers
arranged as [24, 48, 24, 48]. The PdMonoNet model shares the
same hidden layer sizes as the PdNet, with λ set to a sufficiently
large value of 100. The APMNN model configuration consists
of 128 groups, each containing 8 neurons. Each RBF layer in
the RBF model employs a Gaussian basis function to transform
inputs based on radial distance from the center, with 256 centers
in the hidden layer. The ELM model is configured with 256
neurons in its hidden layer. We configured the input dimension
to three to align with the task requirements and applied the
sigmoid function to the final outputs of all models to facil-
itate the prediction of detection probabilities. Parameters for
the ELM model are directly derived from the solution of the
least squares problem, whereas the parameters for other models
are acquired through stochastic optimization using the Adam
optimizer [58]. The loss function is chosen to be the �1 norm.
The learning rate is reduced by a factor of 0.5 every 100 epochs.
The optimal hyperparameters are determined through a grid
search that varied batch sizes (28, 29, 210, 211) and learning
rates (0.02, 0.01, 0.005, 0.001).

In Fig. 4, we illustrate the training loss and learned proba-
bility of detection across various methods under different SNR
conditions. Fig. 4(a) reveals that all methods demonstrate a
decreasing trend in training loss with increasing epochs. No-
tably, our proposed PdNet achieves the lowest training loss,
closely followed by PdMonoNet, which despite sharing PdNet’s
hidden layer sizes, incurs a slightly higher training loss due to
its monotonic constraint. This constraint restricts PdMonoNet
from fitting data that violate the monotonicity due to mea-
surement errors, whereas PdNet can adjust more flexibly to
such errors. The RBF and APMNN models also show com-
petent training losses, albeit higher than those of PdNet and
PdMonoNet, indicating effective in-sample data approximation.
Fig. 4(b) depicts the predicted probability of detection versus
SNR changes within the -20dB to 0dB range used for training.
The PdNet and PdMonoNet models exhibit the best in-sample
approximation, aligning with their training loss performance.
Although the APMNN and RBF models perform slightly less
effectively, the simpler ELM method trails behind, likely due to
its inability to capture complex data patterns and dependencies.
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Fig. 4. Training loss and learned probability of detection by different methods under varying SNR conditions for two receivers with PFA = 1%.

Fig. 5. Training loss and learned probability of detection by different methods under varying SNR conditions, with parameters: fb = 10 kHz, fs = 40 kHz,
t= 0.5 s, PFA = 1%, and 6 receiving nodes.

Fig. 4(c) explores predictions over an extended SNR range of
-20dB to 100dB, beyond the training dataset. Here, the non-
monotonic models, i.e., RBF, ELM, and PdNet, show an abnor-
mal decrease in detection probability. In contrast, the APMNN
and PdMonoNet models maintain reliable outputs, benefiting
from the monotonic constraints that enhance their performance
under extrapolated conditions. Furthermore, it is worth noting
that the prediction error between the theoretical results and the
outputs from PdMonoNet is bounded by our proposed Proposi-
tion 7 and 8. This constitutes another advantage of our proposed
PdMonoNet.

2) Multichannel GLRT Detection: The detection perfor-
mance of the GLRT method is considerably more complex than
that of the energy detection. As previously discussed, we have
prepared a dataset, denoted as D, as described in Apx. A. This
dataset records the feature settings as environmental parameters
and the labels as the probability of detection for the GLRT
method. We have also included the results from Monte Carlo
simulations, which are considered as the ground truth in our
analysis. These simulations are conducted with a substantial
number of realizations: K = 105 and M = 104. This significant
sample size tries to ensure the statistical accuracy and reliability
of the simulation outcomes.

Since the input features for this task have a higher dimension-
ality compared to the task in Section VI-A1, we appropriately
increase the hidden layer sizes for each model. For the PdNet

and PdMonoNet models, the hidden layers are configured
as [112, 224, 112, 224, 112, 224]. The hyperparameter λ for
PdMonoNet is set to a large value of 100. The APMNN model
configuration includes 512 groups, each consisting of 16 neu-
rons. Each layer in the RBF model uses a Gaussian basis
function to transform inputs according to the radial distance
from the center, with 1024 centers in its hidden layer. The
ELM model incorporates 1024 neurons in its hidden layer. We
set the input dimension to 14 to meet the requirements of the
task and applied a sigmoid function to the final outputs of
all models to facilitate the prediction of detection probabili-
ties. Parameters for these models, with the exception of the
ELM model, are optimized using the Adam optimizer, with
optimal hyperparameters determined through a grid search that
varied batch sizes (210, 211, 212, 213) and learning rates (0.02,
0.01, 0.005, 0.001). The loss function is chosen to be the �1
norm. The learning rate is reduced by a factor of 0.5 every
100 epochs.

In Fig. 5, we illustrate the training loss and learned proba-
bility of detection for different methods under different SNR
conditions. Fig. 5(a) demonstrates a decreasing trend in train-
ing loss with increasing epochs across all methods. The per-
formance hierarchy is similar to that observed in Fig. 5(a),
where our proposed PdNet and PdMonoNet outperform others.
Fig. 5(b) shows that all models perform reasonably well under
the parameter variations included in the training set, with our
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TABLE IV
COMPUTATIONAL TIME FOR DIFFERENT METHODS

APMNN RBF ELM
PdNet PdMonoNet (λ= 100)
(prop.) (prop.)

Total Training Time (Seconds, 1000 Epochs) 9742 10943 21 3460 4204
Training Time per Epoch (Seconds) 9.74 10.94 – 3.46 4.20

Inference Time per Sample (Milliseconds) 4.91 1.51 0.20 0.81 0.83

proposed PdNet and PdMonoNet exhibiting the best approx-
imation performance. The performance disparity between the
proposed PdMonoNet and the Monte Carlo simulation results
can be attributed to several factors. These include the approxi-
mation error of PdMonoNet, which is influenced by its architec-
ture, the hyperparameter λ, and the quality of training dataset,
as well as the inherent randomness of the Monte Carlo simula-
tions. The APMNN exhibits a significant performance gap com-
pared to Monte Carlo methods, likely due to its limited capacity
to model complex functions. It has been commonly recognized
that imposing overly restrictive constraints, such as requiring
all-positive weights, significantly limits the hypothesis space
for weight parameters [53]. Consequently, APMNN often per-
forms poorly when modeling complex functions. In contrast,
PdMonoNet avoids such limitations by employing a more flex-
ible yet principled design, enabling it to better capture complex
functional relationships while maintaining interpretability. The
ELM remains the least effective among all the methods. How-
ever, as seen in Fig. 5(c), the RBF, ELM, and PdNet exhibit
non-monotonic behavior. In contrast, PdMonoNet consistently
delivers more accurate and logical results. This reliability is
crucial not only for accuracy but also for solving optimization
problems that utilize network outputs as objective functions.
For example, using PdNet outputs as objectives in first-order
optimization methods could lead the system to erroneously
pursue lower SNR settings, an issue avoided by employing the
more logical PdMonoNet outputs.

In Table IV, we compare the computational time of these
methods during both the training and inference stages. The
results show that the ELM method is the fastest overall, while
our proposed PdNet and PdMonoNet methods are more efficient
than the APMNN and RBF methods. Notably, increasing λ
in PdMonoNet does not result in a more complex network
structure and, therefore, does not increase the computational
time per epoch during training or inference. However, a larger
λ may require more training epochs for the loss to stabilize.
Thus, sufficient training epochs must be ensured when using a
large λ.

B. Comparison on Threshold Determination

In this part , we present a detailed comparison of our pro-
posed ThreshNet and ThreshMonoNet models in threshold de-
termination, highlighting their robustness in handling missing
data and outliers in the training dataset.

The ThreshNet model employs hidden layers configured
as [50, 100, 50, 100, 50, 100]. ThreshMonoNet shares these

dimensions with ThreshNet and maintains a high hyperparam-
eter, λ, set at 10. The APMNN features 128 groups, each with
8 neurons, while each RBF layer utilizes Gaussian basis func-
tions with 256 centers to transform inputs radially. The ELM
model includes 256 neurons in its hidden layer. We configured
the input dimension to 4 to align with the task requirements.
Parameters for all models, except the ELM, are optimized using
the Adam optimizer, with optimal hyperparameters determined
through grid search involving batch sizes (28, 29, 210, 211) and
learning rates (0.02, 0.01, 0.005, 0.001).

Fig. 6(a) illustrates how the learned thresholds vary with
the number of receiving nodes, showcasing results from
several models. Notably, all methods, except the ELM
method, effectively approximate the thresholds under the
parameter variations included in the training set, with our
ThreshNet and ThreshMonoNet demonstrating superior
performance.

The robustness of our models is further assessed in Fig. 6(b),
where data for 6 and 7 node configurations were intention-
ally excluded from the training set. Under these conditions,
ThreshNet shows significant estimation errors, indicating a
lack of generalization when data is incomplete. In contrast,
APMNN, RBF, and ThreshMonoNet maintain accuracy, with
ThreshMonoNet performing the best. The stable performance
of the RBF model is likely due to its localized Gaussian basis
functions, which enable effective interpolation and robust gen-
eralization, even with missing data. The monotonicity embed-
ded in ThreshMonoNet and APMNN likely aids in maintain-
ing consistent threshold predictions, even with missing data,
suggesting their suitability for applications with sparse data
collection.

In scenarios with significant outliers, as depicted in Fig. 6(c),
the distinction between non-monotonic neural networks and
monotonic neural networks becomes more evident. Outliers
were introduced by setting artificially extreme threshold values
for certain node configurations. The performance of the RBF,
ELM, and ThreshNet is negatively impacted as they attempt to
accommodate these outliers, leading to a model that fits these
inaccurate points at the expense of overall accuracy. In contrast,
the performance of the APMNN and ThreshMonoNet remains
stable and closely aligns with the Monte Carlo simulation re-
sults, emphasizing their robustness to extreme data points. The
imposed monotonic constraint prevents these models from be-
ing influenced by outliers, ensuring that they maintain a logical
order in their predictions. Furthermore, it is noteworthy that our
proposed ThreshNet approximates the desired results with the
highest accuracy.
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Fig. 6. Learned thresholds by different methods under varying number of receiving nodes, with parameters: fs = 20 kHz, t= 0.5 s, PFA = 1%, and (a)
neural networks are trained with complete and accurate dataset; (b) neural networks are trained with an incomplete dataset, missing data for 6 and 7 node
configurations (c) neural networks are trained with a contaminated dataset where thresholds were artificially set to 10−1 for the 6 node configuration and
10−4.5 for the 7 node configuration.

Fig. 7. Experiment platform setup.

C. Real Data Experiments on SDR Testbed

In this part, we validate our proposed methods for predicting
detection performance of the multichannel spectrum sensing
application using real data collected from a software-defined
radio (SDR) testbed. Our laboratory experiment utilizes two NI
Universal Software Radio Peripherals (USRP) X410 models:
one equipped with a single antenna serving as the transmitter
and the other equipped with four antennas acting as a multi-
antenna receiver. To simulate a weak signal scenario, the trans-
mitter is connected to a 30dB attenuator.

Fig. 7 illustrates the experimental setup, which adheres to the
parameters used to generate dataset D as described in Apx. A.
Specifically, the transmitter emits signals at a carrier frequency
of 1.4GHz using randomly-generated Quadrature Phase Shift
Keying (QPSK) signals at a baud rate of fb = 10 kHz, with the
transmitter gain set to 0 dB. Operating at a sampling rate of fs =
20 kHz and a receiving gain of 50 dB. The data collected is then
transmitted to a personal computer via a wired connection. Each
detection experiment captures consecutive samples over a t=
0.2 second duration. The detection threshold for each method
is calculated using 1000 realizations of recorded noise data to
achieve a false alarm rate PFA = 1%.

Fig. 8. Prediction of detection performance on software-defined radio
testbed by different methods.

Fig. 8 shows the detection probabilities of different methods
(obtained in Sec. VI-A2) as a function of transmitter gain.
Additionally, Table V presents the mean absolute error (MAE)
of each method when compared to the Monte Carlo results and
the USRP test results. The required input SNR data for these
models were calibrated under a condition of 30dB transmitter
gain and adjusted based on the actual transmitter gain. A
slight discrepancy exists between the detection performances
from Monte Carlo simulations using synthetic data and those
derived from the real data experiment. This discrepancy is
likely caused by the multipath propagation characteristics of
the indoor environment, which differ from the conditions used
to synthesize the training dataset D, where an ideal single-path
scenario is assumed.

Our proposed models, PdNet and PdMonoNet, demonstrate
the closest alignment with the Monte Carlo results. Notably,
all methods provide a reasonable approximation of the Monte
Carlo outcomes, validating their effectiveness in predicting
performance for this multi-channel spectrum sensing system.
Among these, PdMonoNet achieves the most accurate predic-
tion results. However, non-monotonic networks, such as RBF,
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TABLE V
MEAN ABSOLUTE ERRORS FOR DIFFERENT METHODS COMPARED

TO MONTE CARLO RESULTS AND USRP TEST RESULTS

APMNN RBF ELM
PdNet PdMonoNet
(prop.) (prop.)

Monte Carlo 0.029 0.015 0.137 0.005 0.005
USRP Testbed 0.056 0.036 0.116 0.031 0.021

ELM, and PdNet, are anticipated to become unreliable under
extreme SNR conditions, further emphasizing the superior ro-
bustness and performance of the proposed PdMonoNet.

VII. CONCLUSION AND FUTURE DIRECTIONS

In conclusion, this paper makes significant contributions to
the field of multichannel detection by critically evaluating the
prevalent use of Monte Carlo simulations to assess detection
performance and thresholds. We have effectively deployed a
basic multilayer perceptron (MLP)-based neural network, re-
ferred to as PdNet, as an initial method for efficiently pre-
dicting detection performance. Additionally, we introduced a
novel measurement technique using a monotonic neural net-
work (MNN), named PdMonoNet, which has shown superior
performance compared to PdNet due to its ability to leverage
the inherent monotonic relationships within the dataset. These
approaches were further developed into MLP-based ThreshNet
and MNN-based ThreshMonoNet for threshold determination.
Moreover, we explored the theoretical underpinnings of our
PdMonoNet approach, focusing on its universal approxima-
tion capabilities and its predictive accuracy with unseen data.
Our comprehensive numerical experiments have underscored
the effectiveness of our proposed methods, demonstrating their
guaranteed monotonicity and resilience against outliers and new
data points.

Our findings highlight the potential of using monotonic neu-
ral networks for pre-estimating system performance, which sig-
nificantly benefits techniques such as dynamic control of com-
plex systems. This opens up avenues for further research into
predicting the performance of distributed localization and track-
ing systems. Another promising direction for future research is
to explore the properties of monotonic neural networks, such as
deriving their sample complexity, which is crucial for practical
applications.

APPENDIX

A. Generation Process of Dataset D
1) The Overall Structure of the Dataset: The dataset fea-

tures, denoted as θ, are carefully selected to capture critical
aspects of the signal environment and receiver settings. Draw-
ing on a review of related literature [24], [30], [61], typical
features include the baud rate of target signals, the sampling
rate of receivers, the probability of false alarm, observation
time, and the signal-to-noise ratio (SNR) for each of up to ten
receivers. These features are instrumental in quantifying signal
quality across various noise conditions and channel models.

Non-existent receivers are represented by setting their SNR
values to -100 dB.

Data labeling involves generating output variables, y, repre-
senting the probability of detection by the GLRT detector, with
values ranging from 0 to 1. These probabilities are derived from
empirical Monte Carlo simulations, as detailed in Sec. III-A.
It is important to note that y is derived from Monte Carlo
experiments; therefore, it corresponds to �(θ) plus unknown
measurement noise. The feature also includes the probability
of false alarm, which is used to empirically estimate threshold
values γ̂ as shown in (6).

The resultant dataset, D = {(θi, yi)}Ni=1, contains over N =
105 data samples, compiled according to the procedure outlined
in the next subsection. Due to the substantial computational
burden,3 we have to set K = 1000 and M = 100 for generating
D. While the setting also encompasses categorical data such
as signal modulation type and detection algorithms, this paper
excludes such data as they are not numerical and lack a mean-
ingful order or magnitude, which is necessary for MLPs. Al-
though categorical data can be numerically encoded, this often
oversimplifies the data, potentially losing valuable information.
Therefore, this study focuses solely on inherently numerical
features.

2) The Signal Synthetic Process: In the signal generation
phase, an environment encompassing p distributed CR users.
Each of these users is furnished with an individual omnidi-
rectional antenna. The primary objective here is to identify a
sole primary source with a single antenna, specified as r = 1.
The primary signal in question is identified as transmitting
Quadrature Phase Shift Keying (QPSK) modulated signals, with
the baud rate set precisely to fb Hz. Each receiver operates at
a sampling rate of fs Hz. The channel between each receiver
and the signal source is hypothesized to be an independent
Rician fading channel with K-factor being 4. These modulated
signals are generated utilizing the MATLAB Communications
Toolbox, as referenced in [62]. The signal-to-noise ratio (SNR)
for the received signal are independent for each antenna. Each
simulation experiment is executed during t consecutive dura-
tion. The threshold γ is calculated to match the probability of
false alarm PFA using the empirical test statistics from 1000
realizations of pure noise data. The probability of detection is
determined by repeating the detection procedure 100 times.

For each sample in D, parameters are uniformly selected as
follows: fb ranges from 1 kHz to 20 kHz, fs from 2fb to 10fb,
t from 0.1 s to 1 s, PFA from 0.1% to 2.0%, and the number
of receiving nodes from 3 to 10. The SNR for each node is
independently set between -40 dB and 0 dB.

B. A Lipschitz Neural Network with Universal
Approximation Property

As introduced in [63], [64], a fully connected scalar-valued
network, denoted as f(x), is considered Lipschitz bounded by a
constant λ if it fulfills the condition ‖∇f(x)‖∞ ≤ λ, ∀x, where
x ∈ R

I is the input vector. An effective method to construct a

3The generation of D required more than two weeks on our server, which
is equipped with 96 CPU cores.
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Lipschitz bounded neural network is by restricting the matrix
norm of all weight matrices. This method is detailed below.

Note that the f(x) of depth D can be defined as

xd =Wdσ(xd−1) + bd, d= 1, . . . , D (21)

where xd denotes the output from the d-th layer (x0 is the input
and xD is the output), Wd represents the weight matrix, bd is
the bias vector, and σ is a non-linear activation function applied
element-wise and has a Lipschitz constant no greater than 1.
Then the �∞ norm of gradient of f(x) on x admits the following
bounds

‖∇f(x)‖∞ ≤
∥∥ΠD

d=1W
d
∥∥
∞ . (22)

Thus, simply imposing
∥∥ΠD

d=1W
d
∥∥
∞ ≤ λ will also lead to

‖∇f(x)‖∞ ≤ λ, which ensure the λ as the Lipschitz con-
stant of neural network (21). One of the options to keep∥∥ΠD

d=1W
d
∥∥
∞ ≤ λ is to impose

∥∥W1
∥∥
1,∞ ·ΠD

d=2

∥∥Wd
∥∥
∞ ≤

λ [53], [54], which can be conveniently achieved by simple
normalization of each weight matrix as detailed in [53]. It is
essential to recognize that λ is a constant hyperparameter that
must be predefined by the user.

The following Theorem 10 shows the universal approxima-
tion property of this type of Lipschitz neural network to any
Lipschitz continuous function.

Theorem 10 [54, Theorem 3] (Universal Approximation
with Lipschitz Networks): For a fully-connected networks de-
scribed by (21), if σ is GroupSort activation having a group size
of 2 and its weights matrices are constrained as

∥∥W1
∥∥
1,∞ ·

ΠD
d=2

∥∥Wd
∥∥
∞ ≤ λ, then this network can approximate any

Lipschitz function with its Lipschitz constant being λ.

C. Proof of Proposition 7

Note that the used neural network f is designed with maxi-
mum Lipschitz constant 2λ. Given any data sample (θi, yi) ∈
D, the prediction error of f̂ at an unseen feature point θt is
bounded as follows∣∣∣f̂(θt)− �(θt)

∣∣∣
= |f̂(θt)− f̂(θi) + f̂(θi)− yi + yi − �(θi)

+ �(θi)− �(θt)|
≤
∣∣∣f̂(θt)− f̂(θi)

∣∣∣+
∣∣∣f̂(θi)− yi

∣∣∣+ |yi − �(θi)|
+ |�(θi)− �(θt)|

≤ 2λ ‖θt − θi‖1 + β ‖θt − θi‖1 +
∣∣∣f̂(θi)− yi

∣∣∣
+ |�(θi)− yi|

= (2λ+ β) ‖θt − θi‖1 + |�(θi)− yi|+
∣∣∣f̂(θi)− yi

∣∣∣ . (23)

D. Proof of Proposition 8

If θl,θu ∈ D and θl ≤ θt ≤ θu, the following conditions
hold as �(θl)≤ �(θt)< �(θu), f̂(θl)≤ f̂(θt)< f̂(θu). Then
the prediction error of f̂ at θt is bounded by∣∣∣f̂(θt)− �(θt)

∣∣∣
≤max

{∣∣∣f̂(θl)− �(θu)
∣∣∣ ,
∣∣∣f̂(θu)− �(θl)

∣∣∣} (24)

where∣∣∣f̂(θl)− �(θu)
∣∣∣=

∣∣∣f̂(θl)− yl + yl − yu + yu − �(θu)
∣∣∣

≤ |yl − yu|+ |f̂(θl)− yl|+ |�(θu)− yu|
(25)

∣∣∣f̂(θu)− �(θl)
∣∣∣=

∣∣∣f̂(θu)− yu + yu − yl + yl − �(θl)
∣∣∣

≤ |yl − yu|+ |f̂(θu)− yu|+ |�(θl)− yl|
(26)

Therefore, we have∣∣∣f̂(θt)− �(θt)
∣∣∣

≤max
{∣∣∣f̂(θl)− �(θu)

∣∣∣ ,
∣∣∣f̂(θu)− �(θl)

∣∣∣}

≤ |yl − yu|+max
{
|�(θu)− yu|︸ ︷︷ ︸
measurement error

+ |f̂(θl)− yl|︸ ︷︷ ︸
fitting error

,

|�(θl)− yl|︸ ︷︷ ︸
measurement error

+ |f̂(θu)− yu|︸ ︷︷ ︸
fitting error

}
. (27)

REFERENCES

[1] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum sensing
for cognitive radio: State-of-the-art and recent advances,” IEEE Signal
Process. Mag., vol. 29, no. 3, pp. 101–116, May 2012.

[2] S. Yang, W. Yi, and A. Jakobsson, “Multitarget detection strategy for
distributed MIMO radar with widely separated antennas,” IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1–16, 2022.

[3] Y. Zhao, J. K. Nielsen, M. G. Christensen, and J. Chen, “Model-based
voice activity detection in wireless acoustic sensor networks,” in Proc.
26th Eur. Signal Process. Conf. (EUSIPCO), Piscataway, NJ, USA: IEEE
Press, 2018, pp. 425–429.

[4] M. Zhou et al., “Epileptic seizure detection based on EEG signals and
CNN,” Front. Neuroinf., vol. 12, 2018, Art. no. 95.

[5] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio,
part II: Multiuser networks,” IEEE Trans. Wireless Commun., vol. 6, no.
6, pp. 2214–2222, Jun. 2007.

[6] S. Atapattu, C. Tellambura, and H. Jiang, “Energy detection based
cooperative spectrum sensing in cognitive radio networks,” IEEE Trans.
Wireless Commun., vol. 10, no. 4, pp. 1232–1241, Apr. 2011.

[7] M. Park and H. Oh, “Cooperative information-driven source search and
estimation for multiple agents,” Inf. Fusion, vol. 54, pp. 72–84, Feb.
2020.

[8] R. Zhang, J. Zhang, Y. Zhang, and C. Zhang, “Secure crowdsourcing-
based cooperative spectrum sensing,” in Proc. IEEE INFOCOM, 2013,
pp. 2526–2534.

[9] A. A. Khan, M. H. Rehmani, and A. Rachedi, “Cognitive-radio-based
internet of things: Applications, architectures, spectrum related function-
alities, and future research directions,” IEEE Wireless Commun., vol. 24,
no. 3, pp. 17–25, Jun. 2017.

[10] Q. Wu, W. Wang, Z. Li, B. Zhou, Y. Huang, and X. Wang, “Spectrum-
chain: A disruptive dynamic spectrum-sharing framework for 6G,” Sci.
China Inf. Sci., vol. 66, no. 3, 2023, Art. no. 130302.

[11] H. D. Griffiths and C. J. Baker, An Introduction to Passive Radar.
Norwood, MA, USA: Artech House, 2022.

[12] I. Potamitis and E. Fishler, “Microphone array voice activity detection
and noise suppression using wideband generalized likelihood ratio,” in
Proc. INTERSPEECH, 2003, pp. 525–528.

[13] M. Cheng, W. Wang, Y. Zhang, X. Qin, and M. Li, “Target-speaker voice
activity detection via sequence-to-sequence prediction,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2023, pp. 1–5.

[14] J. Xu, S. Mitra, C. Van Hoof, R. F. Yazicioglu, and K. A. Makinwa,
“Active electrodes for wearable EEG acquisition: Review and electronics
design methodology,” IEEE Rev. Biomed. Eng., vol. 10, pp. 187–198,
2017.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 18,2025 at 02:19:26 UTC from IEEE Xplore.  Restrictions apply. 



2168 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

[15] Y. Zhang, Y. Guo, P. Yang, W. Chen, and B. Lo, “Epilepsy seizure
prediction on EEG using common spatial pattern and convolutional
neural network,” IEEE J. Biomed. Health Inform., vol. 24, no. 2, pp.
465–474, Feb. 2020.

[16] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc.
IEEE, vol. 55, no. 4, pp. 523–531, Apr. 1967.

[17] P. K. Varshney, Distributed Detection and Data Fusion. New York, NY,
USA: Springer Sci. & Bus. Media, 2012.

[18] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J. Sel.
Topics Signal Process., vol. 2, no. 1, pp. 4–17, Feb. 2008.

[19] A. Ghasemi, E. S. Sousa, “Collaborative spectrum sensing for oppor-
tunistic access in fading environments,” in Proc. 1st IEEE Int. Symp.
New Frontiers Dynamic Spectr. Access Netw., (DySPAN), Piscataway,
NJ, USA: IEEE Press, 2005, pp. 131–136.

[20] R. Zhang, T. J. Lim, Y.-C. Liang, and Y. Zeng, “Multi-antenna based
spectrum sensing for cognitive radios: A GLRT approach,” IEEE Trans.
Commun., vol. 58, no. 1, pp. 84–88, Jan. 2010.

[21] L. Huang, J. Fang, K. Liu, H. C. So, and H. Li, “An eigenvalue-
moment-ratio approach to blind spectrum sensing for cognitive radio
under sample-starving environment,” IEEE Trans. Veh. Technol., vol.
64, no. 8, pp. 3465–3480, Aug. 2015.

[22] Y. Zeng and Y.-C. Liang, “Eigenvalue-based spectrum sensing algo-
rithms for cognitive radio,” IEEE Trans. Commun., vol. 57, no. 6, pp.
1784–1793, Jun. 2009.

[23] A. Taherpour, M. Nasiri-Kenari, and S. Gazor, “Multiple antenna spec-
trum sensing in cognitive radios,” IEEE Trans. Wireless Commun., vol.
9, no. 2, pp. 814–823, Feb. 2010.

[24] D. Ramirez, G. Vazquez-Vilar, R. Lopez-Valcarce, J. Via, and I. San-
tamaria, “Detection of rank-p signals in cognitive radio networks with
uncalibrated multiple antennas,” IEEE Trans. Signal Process., vol. 59,
no. 8, pp. 3764–3774, Aug. 2011.

[25] Y. Lu, P. Zhu, D. Wang, and M. Fattouche, “Machine learning techniques
with probability vector for cooperative spectrum sensing in cognitive
radio networks,” 2016 IEEE Wireless Commun. and Netw. Conf., 2016,
Piscataway, NJ, USA: IEEE Press, pp. 1–6.

[26] Y. Zhang, Q. Wu, and M. R. Shikh-Bahaei, “On ensemble learning-
based secure fusion strategy for robust cooperative sensing in full-duplex
cognitive radio networks,” IEEE Trans. Commun., vol. 68, no. 10, pp.
6086–6100, Oct. 2020.

[27] W. Lee, M. Kim, and D.-H. Cho, “Deep cooperative sensing: Cooper-
ative spectrum sensing based on convolutional neural networks,” IEEE
Trans. Veh. Technol., vol. 68, no. 3, pp. 3005–3009, Mar. 2019.

[28] J. H. Bae and M. Kim, “Performance improvement of cooperative spec-
trum sensing based on dequantization neural networks,” IEEE Wireless
Commun. Lett., vol. 13, no. 5, pp. 1354–1358, May 2024.

[29] A. K. Dutta et al., “Deep learning-based multi-head self-attention model
for human epilepsy identification from EEG signal for biomedical traits,”
Multimedia Tools Appl., vol. 83, pp. 1–23, Mar. 2024.

[30] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on spectrum
sensing for cognitive radio: Challenges and solutions,” EURASIP J. Adv.
Signal Process., no. 1, pp. 1–15, Jan. 2010.

[31] J. Xie, C. Liu, Y.-C. Liang, and J. Fang, “Activity pattern aware spectrum
sensing: A CNN-based deep learning approach,” IEEE Commun. Lett.,
vol. 23, no. 6, pp. 1025–1028, Jun. 2019.

[32] D. Janu, K. Singh, and S. Kumar, “Machine learning for cooperative
spectrum sensing and sharing: A survey,” Trans. Emerg. Telecommun.
Technol., vol. 33, no. 1, 2022, Art. no. e4352.

[33] A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power
estimation on energy detection for cognitive radio applications,”
IEEE Trans. Commun., vol. 59, no. 12, pp. 3410–3420, Dec.
2011.

[34] A. Patel, H. Ram, A. K. Jagannatham, and P. K. Varshney, “Robust
cooperative spectrum sensing for MIMO cognitive radio networks under
CSI uncertainty,” IEEE Trans. Signal Process., vol. 66, no. 1, pp. 18–33,
Jan. 2018.

[35] L. Zhou, W. Pu, M-y You, R. Zhang, and Q. Shi, “Joint optimization
of UAV deployment and directional antenna orientation for multi-UAV
cooperative sensing,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Piscataway, NJ, USA: IEEE Press, 2023, pp. 1–5.

[36] R. Zhou, W. Pu, L. Zhao, M.-Y. You, Q. Shi, and S. Theodoridis,
“Cooperative sensing via matrix factorization of the partially received
sample covariance matrix,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), 2024, pp. 8881–8885.

[37] W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains
and Their Applications. Oxford, U.K.: Oxford Univ. Press, 1970.

[38] Y. Zhao and D. Shrestha, “Uncertainty in position estimation using ma-
chine learning,” in Proc. Int. Conf. Indoor Positioning Indoor Navigation
(IPIN), Piscataway, NJ, USA: IEEE Press, 2021, pp. 1–7.

[39] S. Bartoletti, et al., “Uncertainty quantification of 5G positioning as
a location data analytics function,” in Proc. Joint Eur. Conf. Netw.
Commun. & 6G Summit (EuCNC/6G Summit), Piscataway, NJ, USA:
IEEE Press, 2022, pp. 255–260.

[40] H. V. Habi, H. Messer, and Y. Bresler, “Learning to bound: A generative
Cramér-Rao bound,” IEEE Trans. Signal Process., vol. 71, pp. 1216–
1231, 2023.

[41] T. Diskin, Y. C. Eldar, and A. Wiesel, “Learning to estimate without
bias,” IEEE Trans. Signal Process., vol. 71, pp. 2162–2171, 2023.

[42] A. Agresti and B. A. Coull, “Approximate is better than “exact” for
interval estimation of binomial proportions,” Amer. Statist., vol. 52, no.
2, pp. 119–126, 1998.

[43] W. Feller, An Introduction to Probability Theory and Its Applications.
New York, NY, USA: Wiley, 1991, vol. 81.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012.

[45] A. De La Fuente, N. Bing, I. Hoeschele, and P. Mendes, “Discov-
ery of meaningful associations in genomic data using partial corre-
lation coefficients,” Bioinformatics, vol. 20, no. 18, pp. 3565–3574,
2004.

[46] R. Vallat, “Pingouin: Statistics in Python,” J. Open Source Softw, vol.
3, no. 31, 2018, Art. no. 1026.

[47] J. Sill and Y. Abu-Mostafa, “Monotonicity hints,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 9, May 1997.

[48] A. Gupta, N. Shukla, L. Marla, A. Kolbeinsson, and K. Yellepeddi,
“How to incorporate monotonicity in deep networks while preserving
flexibility?” 2019, arXiv:1909.10662.

[49] X. Liu, X. Han, N. Zhang, and Q. Liu, “Certified monotonic neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp.
15427–15438.

[50] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta, “Deep lattice
networks and partial monotonic functions,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017.

[51] J. Sill, “Monotonic networks,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 10, 1997.

[52] A. Wehenkel and G. Louppe, “Unconstrained monotonic neural net-
works,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[53] N. Nolte, O. Kitouni, and M. Williams, “Expressive monotonic
neural networks,” in Proc. 11th Int. Conf. Learn. Representations,
2023.

[54] C. Anil, J. Lucas, and R. Grosse, “Sorting out Lipschitz function
approximation,” in Proc. Int. Conf. Mach. Learn., PMLR, 2019, pp.
291–301.

[55] A. Abuduweili and C. Liu, “Estimating neural network robustness via
Lipschitz constant and architecture sensitivity,” 2024, arXiv:2410.23382.

[56] J. Ma and Y. G. Li, “Soft combination and detection for cooperative
spectrum sensing in cognitive radio networks,” IEEE Trans. Wireless
Commun., vol. 7, no. 11, pp. 4502–4507, Nov. 2008.

[57] A. Bollig, C. Disch, M. Arts, and R. Mathar, “Snr walls in eigenvalue-
based spectrum sensing,” EURASIP J. Wireless Commun. Netw., vol.
2017, pp. 1–10, Jun. 2017.

[58] D. P. Kingma, “Adam: A method for stochastic optimization,” 2014,
arXiv:1412.6980.

[59] M. D. Buhmann, “Radial basis functions,” Acta Numerica, vol. 9, pp.
1–38, Jan. 2000.

[60] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning ma-
chines: A survey,” Int. J. Mach. Learn. Cybern., vol. 2, pp. 107–122,
May 2011.

[61] R. Zhou, W. Pu, L. Zhao, M.-Y. You, Q. Shi, and S. Theodoridis, “A
matrix-factorization-error-ratio approach to cooperative sensing in non-
ideal communication environment,” IEEE Trans. Signal Process., vol.
72, pp. 3851–3864, 2024.

[62] The MathWorks, Inc., Communications Toolbox, Natick, Massachusetts,
United States. 2022. Accessed: Mar. 09, 2022. [Online]. Available:
https://www.mathworks.com/help/comm/

[63] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of
neural networks by enforcing Lipschitz continuity,” Mach. Learn., vol.
110, pp. 393–416, Dec. 2021.

[64] O. Kitouni, N. Nolte, and M. Williams, “Robust and provably monotonic
networks,” Mach. Learn.: Sci. Technol., vol. 4, no. 3, 2023, Art. no.
035020.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 18,2025 at 02:19:26 UTC from IEEE Xplore.  Restrictions apply. 

https://www.mathworks.com/help/comm/


ZHOU et al.: HARNESSING MONOTONIC NEURAL NETWORKS 2169

Rui Zhou (Member, IEEE) received the B.Eng.
degree in information engineering from the South-
east University, Nanjing, China, in 2017, and the
Ph.D. degree from The Hong Kong University of
Science and Technology (HKUST), Hong Kong, in
2021. Currently, he is a Research Scientist with
Shenzhen Research Institute of Big Data and an
Adjunct Assistant Professor with the School of
Science and Engineering, The Chinese University of
Hong Kong, Shenzhen, China. His research interests
include optimization algorithms, statistical signal

processing, machine learning, and financial engineering.

Wenqiang Pu received the B.S. and Ph.D. degrees
in electrical engineering from Xidian University,
Xi’an, China, in 2013 and 2018, respectively. From
2019 to 2020, he was a Postdoctoral Associate
with the School of Science and Engineering, The
Chinese University of Hong Kong (Shenzhen). Cur-
rently, he is a Research Scientist with Shenzhen
Research Institute of Big Data. His research in-
terests include signal processing and optimization
algorithms. His coauthored paper received Best Stu-
dent Paper Award from IEEE SAM 2024. He serves

as an Associate Editor of IEEE SIGNAL PROCESSING LETTERS.

Ming-Yi You received the B.S. and Ph.D. degrees
in mechanical engineering from Shanghai Jiao Tong
University, Shanghai, in 2006 and 2012, respec-
tively. He was invited to visit the M. S. Wu Manu-
facturing Research Center, University of Michigan,
from 2007 to 2008. Currently, he is a Senior Expert
with the No. 36 Research Institute of CETC and
leading a research group in radio direction finding
and localization. He has published over 50 papers
and coauthored the book Radio Direction Finding:
Theory and Practice. His research interests include

condition-based maintenance, radio direction finding, wireless localization,
and multiobject tracking.

Qingjiang Shi (Member, IEEE) received the Ph.D.
degree in electronic engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2011. From
2009 to 2010, he visited Prof. Z.-Q. (Tom) Luo’s
Research Group with the University of Minnesota,
Twin Cities. In 2011, he worked as a Research Sci-
entist with Bell Labs, China. In 2012, he was with
the School of Information and Science Technology,
Zhejiang Sci-Tech University. From 2016 to 2017,
he worked as a Research Fellow with Iowa State
University, USA. Since 2018, he has been with the

School of Software Engineering, Tongji University, where he is currently a
Full Professor. He is also with Shenzhen Research Institute of Big Data. His
interests lie in algorithm design and analysis with applications in machine
learning, signal processing, and wireless networks. So far, he has published
more than 80 IEEE journals and filed about 40 national patents. He was
an Associate Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING. He
was the recipient of the IEEE Signal Processing Society Best Paper Award in
2022, the Huawei Technical Cooperation Achievement Transformation Award
(2nd Prize) in 2022, the Huawei Outstanding Technical Achievement Award
in 2021, the Golden Medal at the 46th International Exhibition of Inventions
of Geneva in 2018, the First Prize of Science and Technology Award from
China Institute of Communications in 2017, the National Excellent Doctoral
Dissertation Nomination Award in 2013, the Shanghai Excellent Doctoral
Dissertation Award in 2012, and the Best Paper Award from the IEEE
PIMRC’09 conference.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 18,2025 at 02:19:26 UTC from IEEE Xplore.  Restrictions apply. 



<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		
		/FRA <>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <>
		/NOR <>
		/DEU <>
		/CZE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <>
		/RUM <>
		
		/PTB <>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <>
		/POL <>
		
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		
		/ESP <>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


