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A Robust Cooperative Sensing Approach for
Incomplete and Contaminated Data

Rui Zhou , Wenqiang Pu , Ming-Yi You , and Qingjiang Shi

Abstract—Cooperative sensing utilizes multiple receivers dis-
persed across different locations, capitalizing on the advantages
of multiple antennas and spatial diversity gain. This mechanism
is crucial for monitoring the availability of licensed spectrum
for secondary use when free from primary users. However, the
efficacy of cooperative sensing relies heavily on the flawless
transmission of raw data from cooperating receivers to a fusion
center, a condition that may not always be fulfilled in real-
world scenarios. This study investigates cooperative sensing in
the context where the raw data is compromised by errors
introduced during transmission, attributable to a relatively high
bit error rate (BER). Consequently, the data received at the fu-
sion center becomes incomplete and contaminated. Conventional
multiantenna detectors are not adequately designed to handle
such situations. To overcome this, we introduce the missing-
data t-distribution generalized likelihood ratio test (mtGLRT)
detectors to manage such problematic data at the fusion center.
The structured covariance matrices are estimated from this
problematic data. Efficient optimization algorithms using the gen-
eralized expectation-maximization (GEM) method are developed
accordingly. Numerical experiments corroborate the robustness
of the proposed cooperative sensing methods.

Index Terms—Cooperative sensing, transmission error, incom-
plete data, contaminated data, robust detector.

I. INTRODUCTION

COGNITIVE radio (CR) communication is widely re-
garded as a vital technology for fifth-generation (5G)

wireless communication and Internet of Things (IoT) systems,
offering increased spectrum efficiency and data transmission
speeds by leveraging opportunistic spectrum access to other
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available networks [1], [2], [3]. This technology enables CR
network users to utilize the frequency band allocated to primary
users during periods of inactivity [4]. For CR network users,
spectrum sensing technology is indispensable in monitoring
the occupancy status of the desired frequency band. The co-
operative sensing, a spectrum sensing method, leverages the
distributed antennas of CR network users to augment spatial
diversity gain [5], [6], [7]. For instance, a group of unmanned
aerial vehicles (UAVs) equipped with omnidirectional antennas
could utilize cooperative sensing to detect primary signals more
effectively. Typically, a designated node serves as the fusion
center, tasked with analyzing the aggregated data. A significant
challenge in cooperative sensing lies in the reliable transmission
of data from individual CR nodes to the fusion center. In prac-
tical scenarios, achieving near prefect transmission of raw data
from multiple receivers to the fusion center is challenging due to
the inevitable transmission errors [8], [9]. The imperfections in
the data collected at the fusion center are discussed as follows.

Incomplete Data: If transmission errors can be accurately
identified, such as being linked to a specific data element or a
small block of data elements, these erroneous data elements can
be eliminated. This process results in an incomplete dataset,
i.e., some data elements are missing at the fusion center, as
illustrated in Fig. 1. Numerous studies have explored similar
problems arising from incomplete data in fields such as finance
[10], [11], radar [12], and wireless sensor networks [13]. In gen-
eral, there are two primary and accessible techniques for han-
dling missing data: the deletion and the imputation techniques
[14]. The deletion method removes any samples containing
missing entries from the analysis. In contrast, the imputation
technique substitutes missing data with estimated values, after
which the completed dataset is utilized for further analysis. For
example, the most basic methods involve using adjacent values
or the mean to impute missing data [15]. Another option is
to employ a Gaussian distribution model for data imputation,
as detailed in [16]. More sophisticated methods presume prior
data structures to inform the imputation process, such as low-
rank data completion [17] and regression imputation [18]. How-
ever, both of these methods have their limitations. The deletion
method might eliminate informative data. Simple imputation
methods can introduce errors or disrupt the statistical properties
of the data. Moreover, in typical cooperative sensing scenario,
the presence of predominant noise obscures any underlying
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Fig. 1. Illustration of the incomplete and contaminated data at the fusion center.

structural information, thereby hindering the use of imputation
techniques that rely on such structures. An alternative approach
to handling missing data involves developing tailored meth-
ods for specific applications. For example, robust modeling of
partially observed data using a vector autoregression model
has been examined in [11]. These tailored methods often yield
better performance in applications but require additional effort
in specific algorithm development.

Contaminated Data: Furthermore, there is also a possi-
bility that certain transmission errors may not be accurately
identified, leading to a dataset at the fusion center that is not
just incomplete, but contaminated as well. For example, the
parity bit, a common error detection mechanism, fails to catch
an even number of bit errors, as detailed in [19]. This leads
to a contaminated dataset, which can significantly impair the
performance of the existing detection algorithms. To address
it, typical solutions involve discarding the corrupt data points,
employing methods such as the local outlier factor (LOF) and
the interquartile range method [20]. These methods assume that
contaminated data behave as outliers, which are substantially
different from the majority of the data points in a distribution.
Nonetheless, these approaches have clear limitations: they are
ineffective if the contaminated data do not distinctly differ from
other data points, and they often rely on additional hyperparam-
eters to distinguish the contamination.

An alternative strategy to resist contamination is to account
for the presence of contaminated data items within the dataset.
There has been extensive research in this domain. For example,
a robust generalized likelihood ratio test (GLRT) detector has
been developed to counter adversarial perturbations in classifi-
cation tasks [21] and has been evaluated against the minimax
approach [22]. Another noteworthy study has focused on the
detection of false data injection attacks in electrical grids [23].
In the domain of cooperative sensing, extensive research has
been conducted across various levels of data fusion. For in-
stance, the issue of Byzantine attacks is addressed in decision
fusion scenarios, where CR users independently determine the
presence of primary signals and subsequently transmit their
decisions to a fusion center [24]. The challenge of fraudulent
data is tackled in the context of power information fusion, with
CR users sending their computed energy readings to the fusion
center [25], [26]. Likewise, the problem of impulsive noise is
examined in [27], which aligns with the focus of this paper
on raw data fusion. In this realm, the M-estimator has been

introduced to robustly estimate the covariance matrix of the
gathered signals, and the detection process utilizes the ratio
between the largest eigenvalues of this matrix and the average
power of the received signals. It is important to note that these
existing robust detection methods cannot be directly applied to
scenarios of raw data fusion in the presence of missing data.

The presence of incomplete and contaminated data at the
fusion center poses significant challenges for effective spectrum
sensing. Conventional non-parametric methods, such as energy
detection (ED) [28], the eigenvalue arithmetic-to-geometric
mean (AGM) [29], and the eigenvalue-moment-ratio (EMR)
detector [30], rely on calculations involving the power or co-
variance matrix of received signals. Similarly, the standard
parametric approach, exemplified by the GLRT detector [31],
depends on the estimation of received signals’ statistical pa-
rameters. When these traditional techniques encounter incom-
plete and contaminated data, a preprocessing step is required to
address missing data points before applying the methods, and
the presence of contaminated data inevitably impairs detection
performance. The impact of such data anomalies is anticipated
to be pronounced, particularly because many extant detection
algorithms, including the classical GLRT method, assume that
the received data follow a Gaussian distribution—a condition
known to be highly susceptible to outliers. To our knowledge,
no existing studies have directly addressed the challenges posed
by incomplete and contaminated datasets in cooperative sens-
ing, particularly where the fusion center collects raw data from
CR nodes.

To this end, the primary goal of this paper is to develop a
robust cooperative spectrum sensing approach for incomplete
and contaminated data. The main contributions of this paper
are as follows:

• A pronounced heavy-tailed distribution is identified within
the contaminated dataset. A quantitative analysis is further
conducted to demonstrate the proximity of the contami-
nated data to the t-distribution.

• A customized robust detection methods designated as the
missing-data t-distribution GLRT (mtGLRT) is devel-
oped for incomplete and contaminated data. Addition-
ally, we propose two specific robust detection methods
exclusively for scenarios with either incomplete data or
contaminated data.

• The proposed mtGLRT detector involves maximum likeli-
hood estimation for structured covariance matrices within
the context of a complex multivariate t-distribution. To ef-
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ficiently derive these estimations, we develop optimization
algorithm that falls within the category of the generalized
expectation maximization (GEM) algorithm.

• Numerical experiments on both synthetic and real record-
ings are conducted to compare the performance of our pro-
posed cooperative spectrum sensing methods with several
benchmark methods. Robustness of the proposed detec-
tors is demonstrated, even in the face of high Bit Error
Rate (BER).

This paper is organized as follows. We first provide the signal
model and inaccurate transmission issue in Sec. II. In Sec. III,
we propose the robust detectors and the corresponding MLE
solutions for incomplete and contaminated data. The specific
detectors for either incomplete or contaminated data are pre-
sented in Sec. IV. Numerical experiments are given in Sec. V.
Finally, conclusions are summarized in Sec. VI.

II. PROBLEM FORMULATION

A. Signal Model

Consider p distributed CR users, each equipped with a single
antenna. These users cooperatively sense a frequency band of
interest occupied by a primary user. The channels connecting
the primary user and each of the CR users exhibit frequency
non-selective (flat) fading, and the rank of the corresponding
signal subspace is assumed to be r. We define two hypotheses:
signal absence and presence events, denoted as H0 and H1

respectively. Let xj ∈ C represent the received signal of the j-th
(j = 1, . . . , p) receiver, and x= [x1, . . . , xp]

T ∈ C
p. The con-

ventional hypothesis testing problem is formulated as follows:

H0 : x= n,

H1 : x=Hs+ n, (1)

In (1), s ∈ C
r is the primary signal following an independent

and identically distributed (i.i.d.) zero-mean circular complex
Gaussian (CCG) distribution1. H ∈ C

p×r represents the un-
known channel between the primary user and the receivers, and
n ∈ C

p is the i.i.d. zero-mean CCG and uncorrelated noise. For
the current discussion, we disregard the differences in propaga-
tion delays from the primary user to the distributed CR users.
The hypothesis testing model remains valid if considering dif-
ferent propagation delays where additional delay compensation
procedure is needed.

Given that any spatial correlation and scaling of the primary
signal can be incorporated into H, we assume the covariance
matrix of s to be the identity matrix, i.e., E

(
ssH

)
= Ir and

denote the covariance matrix of the received signal x as Σ.
The hypothesis testing problem is thus written as:

H0 : Σ ∈ S0,

H1 : Σ ∈ S1, (2)

1The CCG distribution characterizes complex-valued random variables with
independently and identically Gaussian-distributed real and imaginary parts,
and a uniformly distributed phase from 0 to 2π. This configuration ensures
circular symmetry in the complex plane. The CCG distribution is extensively
utilized in the fields of signal processing and communications [32].

where S0 and S1 are the feasible covariance matrix structure
sets, i.e.,

S0 = {Diag (ψ) |ψ ∈ [ψL,ψU]}
S1 =

{
HHH + Diag (ψ) |H ∈ C

p×r,ψ ∈ [ψL,ψU]
}

(3)

with ψL and ψU being the predetermined lower and upper
bounds of the noise power respectively (0≤ψL ≤ψU). Given

N observations of the raw data, X= [x1, . . . ,xN ]
T , various

methods have been developed for Problem (2) [30], [31], [33]
and one of the most popular detector, i.e., GLRT [31], com-
pares the following statistic with a predefined threshold γ to
determine the existence of the primary signal, i.e.,

ξGLR =
fG

(
X | Σ̂1

)

fG
(
X | Σ̂0

)
H1

≷
H0

γ, (4)

where Σ̂0 and Σ̂1 are the maximum likelihood estimate (MLE)
solution from X under corresponding structures as presented
in (2), fG (X |Σ) =

∏N
i=1 exp(−xH

i Σ−1xi)/ ((π)
p det(Σ)) is

the probability density function (pdf) of the complex multivari-
ate Gaussian distribution.

B. Challenges of Incomplete and Contaminated Data

Though the effectiveness of the GLRT has been exhibited
across various applications, it is applicable only under ideal
scenarios where the raw data X is accurately gathered at the
fusion center. However, as previously mentioned in Sec. I,
we anticipate that the data at the fusion center will be both
incomplete and contaminated. A primary concern is that the
classical GLRT presumes Gaussian-distributed received data.
Contamination can alter the data distribution, thereby impairing
detection accuracy.

To illustrate the statistical distribution of the contaminated
data, we simulate space electromagnetic signals at the receivers
by generating 1000 random numbers following a standard nor-
mal distribution N (0, 1). These signals are sampled using a
24-bit bipolar analog-to-digital converter (ADC) with a ±10
volts reference voltage. The sampled data are then transmitted
to the fusion center through a noisy wireless channel with a
BER of 1%. The distribution of the received data, as displayed
in Fig. 2(a), exhibits notable heavy tails. The phenomenon can
be explained by recognizing that the thin tails of the Gaussian
distribution render the inclusion of extreme samples (those with
large magnitude values) highly unlikely. However, the magni-
tude of the samples is dominated by a portion of the bits, such
as the top 4 bits. The probability of flipping at least one of
these 4 bits is approximately 1− 0.994 ≈ 0.04. Despite the low
probability, bit flips can significantly alter x’s values, leading
to a distribution with heavier tails. It is acknowledged that
Gaussian-based estimates are sensitive to outliers, suggesting
that the traditional GLRT’s performance may decline with con-
taminated data.

To identify an appropriate distribution for the contaminated
data, we examine the t-distribution, known for effectively cap-
turing heavy-tailed characteristics. The Gaussian distribution is
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Fig. 2. Histogram of the empirical data distribution post noisy transmission (BER = 1%) with K-S test results.

also included as a reference distribution for comparison. We fit
the contaminated data to both distributions and then utilized the
Kolmogorov–Smirnov (K–S) test to assess the goodness of fit
[34]. Using MATLAB’s kstest function, we computed the K–S
statistics and p-values2. After 1000 iterations, the results shown
in Fig. 2(b) and 2(c) indicate that the t-distribution more accu-
rately reflects the contaminated data than the Gaussian distribu-
tion. The p-values for the t-distribution surpass the conventional
standard 5% significance level, endorsing it as a fitting model
for the contaminated data. For comparison, the p-values under
the Gaussian assumption do not meet this threshold, confirming
a poor fit. This can be explained by the fact that t-distributions,
which exhibit heavier tails at lower degrees of freedom, are
more suitable for modeling heavy-tailed data than the Gaussian
distribution.

III. THE mtGLRT DETECTOR FOR INCOMPLETE AND

CONTAMINATED DATA

In this section, we delve into the development of a robust
detector specifically designed to handle incomplete and con-
taminated data. As shown in Sec. II-B, contaminated data of-
ten follows a heavy-tailed distribution that aligns closely with
the t-distribution profile. Furthermore, the t-distribution has
been successfully employed in various applications such as
finance [11], radar tracking [35], and multi-sensor fusion [36].
The extensive body of theoretical work on parameter estima-
tion for the t-distribution is expected to simplify the develop-
ment of associated algorithms [37], while the broader heavy-
tailed distributions are likely to entail greater complexity [38],
[39]. Therefore, considering these practical considerations, we
propose to model the contaminated data with the multivariate
t-distribution [37]. Given its base in t-distribution, the ability
of directly handing missing data, and its function in the GLRT,
we propose to designate it as the missing-data t-distribution
(mtGLRT) detector.

2The K-S statistic measures the discrepancy between the empirical data
distribution and a reference distribution. A small p-value indicates a significant
divergence from the reference distribution, whereas a large p-value implies no
substantial difference, suggesting equivalence between the two distributions.

A. Preliminaries: The Complex Multivariate t-Distribution

The heavy-tailed distribution known as the multivariate
t-distribution is frequently employed in various applications.
The p-dimensional complex multivariate t-distribution encom-
passes a pdf as

ft (x;μ,Σ, ν)

=
Γ (ν + p)

(νπ)pΓ (ν) |Σ|

[
1 +

1

ν
(x− μ)

H
Σ−1 (x− μ)

]−(ν+p)

,

(5)

where x ∈ C
p denotes the observation vector, ν ≥ 1 is the

degrees of freedom, Σ is the p× p positive definite scat-
ter matrix, μ is the p-dimensional mean vector and Γ (a) =∫ ∞
0

t(a−1) exp (−t) dt is the gamma function [37]. The smaller
ν is, the heavier the tail is. Notably, the complex multi-
variate Gaussian distribution is a special case of multivariate
t-distribution with ν →∞. Interestingly, the above multivariate
t-distribution can be represented in a hierarchical structure as

x|τ i.i.d∼ CN
(
μ,

1

τ
Σ

)
,

τ
i.i.d∼ Gamma

(ν

2
,
ν

2

)
, (6)

where CN (μ,Σ) is the complex multivariate Gaussian dis-
tribution with mean vector μ and covariance matrix Σ.
Gamma (a, b) denotes gamma distribution of shape a and rate
b with pdf

fGM (τ) = baτ (a−1) exp (−bτ)

Γ (a)
. (7)

The hierarchical structure will play an important role in
our analysis and algorithm design, which is discussed in
the following.

B. The mtGLRT Detector

We propose to use the complex multivariate t-distribution to
model the data. The decision rule therefore can be formulated
as follows:

ξmtGLR =
ft

(
Xo | Σ̂1

)

ft

(
Xo | Σ̂0

)
H1

≷
H0

γ, (8)
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where ft (Xo |Σ) is the pdf of observed part Xo given the
covariance matrix3 Σ, i.e.,

ft (Xo |Σ) =

N∏

i=1

Γ(ν + pi)(1 +
1
νx

H
i,oΣ

−1
i,ooxi,o)

−(ν+pi)

(πν)piΓ(ν) det(Σi,oo)
,

(9)

here xi,o ∈ C
pi is a vector collecting (pi is the number of

observed elements in xi) observed data elements in xi, Σi,oo ∈
S
pi

+ (Spi

+ is the set of all pi × pi symmetric positive semidefinite
matrices) is the sub-matrix of Σ representing the covariance
matrix of xi,o, Σ̂0 and Σ̂1 are obtained from observed data Xo

by solving the following MLE problems:

Σ̂0 = arg max
Σ∈S0

ft (Xo |Σ) , (10)

Σ̂1 = arg max
Σ∈S1

ft (Xo |Σ) . (11)

The estimation of complex-valued structured covariance ma-
trices confronts significant challenges, particularly when as-
suming the data to follow a t-distribution amidst instances of
missing data, as detailed in Problems (10) and (11). In the
work of [40], a comparable constraint to that in Problem (11)
was examined, with the solution to the covariance matrix esti-
mation under a real-valued multivariate Gaussian distribution.
Subsequent research by [12] delved into the complex-valued
covariance matrix estimation problems with different structures
under the assumption of multivariate Gaussian distribution.
Recently, the authors in [38] explored the estimation of real-
valued parameters, including the covariance matrix, from in-
complete data within the framework of a mixture of elliptical
distributions, a category which encompasses the t-distribution
as a special instance. These algorithms are all iterative methods,
which address the original problem by solving a sequence of
surrogate problems.

However, the methodologies presented in previous studies do
not directly translate to solving Problems (10) and (11) that
we aim to address. These methods are specifically designed
for scenarios that assume either a Gaussian distribution or an
unstructured covariance matrix. In the subsequent subsection,
we will detail the specialized algorithms developed to tackle
these specific Problems.

C. Solving Problems (10) and (11)

In this study, we introduce an optimization algorithm con-
structed upon the GEM method to solve the aforementioned
problems. The introduction of GEM method is also included
in Apx. A. More specifically, this method transforms the task
of exactly solving the surrogate problem into improving the
objective beyond the previous step. We will begin by address-
ing Problem (11) as it encompasses Problem (10), which is
a specific instance of the former. The procedural details are
elaborated in the following.

3Technically, in the context of the complex t-distribution, the parameter Σ
is named as the scatter matrix, while the corresponding covariance matrix is
ν

ν−2
Σ. However, for the sake of simplicity in this discussion, we will also

refer to it as the covariance matrix in this paper.

Using the hierarchical model (6) of the complex multivariate
t-distribution, we have

(xi,o,xi,m) | τi i.i.d∼ CN
(

0,
1

τi
Σ

)
,

τi
i.i.d∼ Gamma

(ν

2
,
ν

2

)
, (12)

where xi,o and xi,m represent the observed and missing compo-
nents of xi, τ = {τi}Ni=1 collects the introduced latent variables,
and ν is the degrees of freedom decided by the user. The com-
plete data log-likelihood of (Xo,Xm, τ ) is simply

� (Xo,Xm, τ |Σ)=

N∑

i=1

log

[
exp(−xH

i (Στi )
−1xi)

(π)p det(Στi )
fGM (τi)

]

,

(13)

where Xm = {xi,m}Ni=1 collects all the missing data, fGM (τi)
is the pdf of τi given ν, and is not related to the unknown pa-
rameter Σ. It should be noted that the equation for the complete
data log-likelihood, (13), is expressed differently as both (10)
and (11).

a) Expectation (E) step: The task is obtaining the fol-
lowing expression (ignoring the constant items irrelevant to
unknown parameter Σ):

Q
(
Σ |Σk

)

= EXm,τ |Xo,Σk [� (Xo,Xm, τ |Σ)]

= T log det(Σ−1)− Tr

(
Σ−1

N∑

i=1

EXm,τ |Xo,Σk

[
τixix

H
i

]

︸ ︷︷ ︸
�Ak+1

)
,

(14)

where Ak+1 has an analytical form as delineated in Lemma 1.
Note that here Ak+1 	 0 is guaranteed in principle.

Lemma 1: The analytical form of Ak+1 can be expressed as

EXm,τ |Xo,Σk

[
τixix

H
i

]
= τ̄ki x̄

k
i (x̄

k
i )

H +Φk
i , (15)

where τ̄ki = EXm,τ |Xo,Σk [τi] =
ν+2pi

ν+2xH
i,o(Σ

k
i,oo)

−1xi,o
, x̄k

i =

EXm,τ |Xo,Σk [xi] whose missing elements will be found
using EXm,τ |Xo,Σk [xi,m] =Σk

i,mo(Σ
k
i,oo)

−1xi,o, and the
(l, j)-th element of Φk

i ∈ C
p×p is zero if either xl,i or

xj,i is observed, otherwise is the corresponding element of
Σk

i,mm −Σk
i,mo(Σ

k
i,oo)

−1Σk
i,om.

Proof: See Apx. B.
b) Maximization (M) step: Given the Q function as (14),

the surrogate problem is simply written as

max
H,ψ

T log det(Σ−1)− Tr
(
Σ−1Ak+1

)

s.t. Σ=HHH + Diag (ψ) ,

H ∈ C
p×r,ψ ∈ [ψL,ψU]. (16)

This problem allows for a formulation similar to the one consid-
ered in [40, Problem (2)] and can be addressed by extending [40,
Algorithm 1] to our specific case. The details are documented
in Apx. C and the customized algorithm is presented as Alg. 2.
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Algorithm 1 : A GEM-based algorithm for Problem (10) and
Problem (11).

1: Initialize H0, Ψ0 and Σ0 =H0(H0)H +Ψ0.
2: for k = 0, 1, 2, . . . do
3: E-step: compute Ak+1 using (14);
4: M-step:
5: [Problem (10):] update Σk+1

0 = Diag(Ak+1/T );

6: [Problem (11):] update Σk+1
1 by executing Alg. 2 for a

single round ;
7: k ← k + 1;
8: Terminate when converges;
9: end for

10: Return Σk
0 or Σk

1 .

To tackle Problem (10), we encounter a surrogate problem
that shares the same objective function but possesses a different
constraint, namely Σ ∈ S0. Obtaining the optimal solution to
this surrogate problem becomes a straightforward task, as

Σ� = Diag(Ak+1/T ). (17)

c) The Overall Algorithm: In the EM framework, the
algorithm iteratively performs the E step and the M step until
convergence is reached. During each M step, the iterative Alg. 2,
which falls under the majorization-minimization (MM) frame-
work, is traditionally run to convergence, which can be time-
intensive. However, as Alg. 2 ensures monotonic improvement
of the objective function with each iteration, it is sufficient to ex-
ecute it for a single iteration within each M step. This modified
approach, akin to the GEM method, has the potential to speed
up convergence compared to the classical EM algorithm [41],
[42]. The comprehensive algorithm for addressing Problem (10)
and (11) is detailed in Alg. 1.

d) The Robustness and Convergence: In this subsection,
we discuss the robustness of the proposed covariance matrix
estimators in (10) and (11) as well as the convergence behavior
of Alg. 1.

Since our estimators are the maximum likelihood estima-
tion for data following a t-distribution, their robustness against
contamination can be characterized by the so-called influ-
ence function [43], which quantifies the estimator’s sensitiv-
ity to minor disruptions or outliers. A larger value of the in-
fluence function indicates higher sensitivity. As delineated in
[44, Theorem 8], using a complex multivariate t-distribution
to model the data limits the impact of outliers and thus the-
oretically leads to a bounded influence function. From this
perspective, we can assert that our estimators are robust in the
face of contaminated data. Regarding the developed Alg. 1,
the sequence {Σk} generated by it converges to a station-
ary point of Problem (10) or Problem (11). This convergence
property is due to the fact that Alg. 1 falls into the gen-
eralized expectation-maximization (GEM) framework, whose
convergence to stationary points has been well established in
[45, Theorem 1].

IV. SPECIFIC DETECTOR DESIGN FOR INCOMPLETE OR

CONTAMINATED DATA

Indeed, the developed mtGLRT detector in Sec. III is de-
signed for scenarios featuring both incomplete and contami-
nated data. In real-world applications, these problematic data
scenarios might not occur conjointly. Considering the real-
time requirements in spectrum sensing applications, it becomes
compelling to explore specific detectors for either incomplete
or contaminated data. In this section, we delve into the de-
velopment of specialized detectors, tailored for managing ei-
ther incomplete or contaminated data. They are named as
the missing-data GLRT (mGLRT) and t-distribution GLRT
(tGLRT), respectively. It is important to note that the mtGLRT
detector, simplifies to mGLRT when the degrees of freedom pa-
rameter ν tends towards infinity, and to tGLRT in the absence of
missing data.

A. The mGLRT Detector for Incomplete Data

Note that if the data are uncontaminated, they can be effec-
tively modeled using the Gaussian distribution, which repre-
sents a special case of the t-distribution as ν →∞. Building
on the proposed mtGLRT method, the missing-data GLRT, now
termed mGLRT, can be reformulated as follows:

ξmGLR =
fG

(
Xo | Σ̂1

)

fG
(
Xo | Σ̂0

)
H1

≷
H0

γ, (18)

where p (Xo |Σ) denotes the Gaussian pdf of the observed data
Xo for a given covariance matrix Σ, specifically:

fG (Xo |Σ) =
N∏

i=1

exp(−xH
i,oΣ

−1
i,ooxi,o)

(π)pi det(Σi,oo)
, (19)

In this context, Σ̂0 and Σ̂1 represent the MLE results derived
from Xo under the assumption of a complex multivariate Gaus-
sian model. By letting ν →∞ in Sec. III-C, we can obtain Σ̂0

and Σ̂1 via Alg. 2. This process includes an adjustment where
τ̄ki = 1 for all i, k during the calculation of Ak.

B. The tGLRT Detector For Contaminated Data

Building on the proposed mtGLRT method, the tGLRT for
handling contaminated data can be formally expressed as:

ξtGLR =
ft

(
X | Σ̂1

)

ft

(
X | Σ̂0

)
H1

≷
H0

γ, (20)

where Σ̂0 and Σ̂1 represent the MLE results derived from the
complete data X under the assumption of a complex multi-
variate t-distribution. In scenarios without missing data, the
estimation of Σ̂0 and Σ̂1 can be efficiently accomplished using
Alg. 2. Under such conditions, the computation of Ak becomes
significantly easier.
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V. NUMERICAL EXPERIMENTS

In this section, we will conduct both synthetic data ex-
periments as well as real data experiments to illustrate the
performance of our proposed robust cooperative spectrum
sensing techniques.

A. Synthetic Data Experiments

In the signal generation phase, an environment encompassing
8 distributed CR users, denoted as p= 8, is examined. Each
of these users is furnished with an individual omnidirectional
antenna. The primary objective here is to identify a sole primary
source with a single antenna, specified as r = 1. The primary
source in question is identified as transmitting Quadrature Phase
Shift Keying (QPSK) modulated signals, with the baud rate set
precisely to 20 kHz. Each receiver operates at a sampling rate
of 100 kHz. The channel between each receiver and the signal
source is hypothesized to be an independent Rician fading
channel with K-factor being 4. These modulated signals are
generated utilizing the MATLAB Communications Toolbox,
as referenced in [46]. It is pertinent to note that the noise
power of the CR user, denoted as σ̂j (j = 1 . . . , p), is equal
to β, and β expressed in dB, maintains a uniform distribution
within an interval of [−1, 1] dB. This distribution is outlined in
the study by [29], which examines scenarios characterized by
small noise power variations. The noise power is assume to be
unknown, i.e., ψL = 0 and ψU =∞. The signal-to-noise ratio
(SNR)4 for the received signal remains constant for each an-
tenna. In the data transmission phase, the process of analog-to-
digital conversion (ADC) is simulated to quantify the received
data into a format of a 24-bit signed integer. Subsequently, the
data is subjected to transmission errors, which are introduced
in accordance with a pre-established BER. Each simulation
experiment is executed using 500 consecutive samples, equating
to a duration of approximately 5 milliseconds. The threshold
γ is calculated using the empirical test statistics from 10000
realizations of pure noise data. The probability of detection is
determined by repeating the detection procedure 10000 times.

1) Selection of Degrees of Freedom ν: It is essential to
specify the degrees of freedom, ν, for the tGLRT and mtGLRT
methods. As ν increases towards infinity, the tGLRT method
converges to the classical GLRT method theoretically. Con-
versely, a small ν enables a more robust estimation of the co-
variance matrix in the presence of contaminated data. However,
the impact of ν on detection performance remains uncertain. To
investigate this, we performed a numerical experiment evaluat-
ing the tGLRT method with varying ν values.

In Fig. 3, we assess the tGLRT method’s performance with
several ν choices. It is noteworthy that the classical GLRT
method is effectively a variant of the tGLRT method in the
limit as ν approaches infinity. For error-free transmission, the
probability of detection increases slightly with larger ν values.

4In this context, the SNR quantifies the quality of the primary signal
received by the CR users, whereas the BER evaluates the quality of the
wireless data link between the CR users and the fusion center. Consequently,
the SNR and BER in the numerical experiments are indirectly related.

Fig. 3. Performance of tGLRT method under different BER conditions
versus ν: PFA = 1%, SNR =−14dB.

This slight increase can be ascribed to the fact that data transmit-
ted perfectly approximates a Gaussian distribution, which is a
special case of the t-distribution as ν →∞. When BER = 0.1%,
performance initially improves with higher ν values but then
diminishes. Conversely, at higher BER levels, detection perfor-
mance significantly enhances with smaller ν values. A more
detailed empirical explanation of the robustness of the proposed
tGLRT method is provided in Apx. D. Therefore, if the BER
level is precisely known, the optimal ν can be determined
through empirical analysis. In the absence of prior knowledge
of the BER level, a conservative choice of ν, such as ν = 1, is
recommended for further numerical experiments.

2) Detection Performance: In this section, we illustrate the
robust performance of our proposed cooperative detectors by
feeding them with imperfectly transmitted data. For compar-
ison, we will report the detecting performance of the follow-
ing methods:

1) Classical GLRT with Clean Data: We utilize the
classical GLRT detector as outlined in (4), provided with
complete and accurate data. This scenario serves as a
benchmark for the optimal performance achievable by
GLRT-based methods in our experiments.

2) Classical GLRT with Imputation/Deletion: Here, the
classical GLRT detector (4) is applied to datasets that
have undergone missing data handling through either im-
putation or deletion.

3) M-estimator with Data Imputation/Deletion: This
robust detection approach employs an M-estimator, as
detailed in [27], coupled with datasets treated for missing
values via imputation or deletion.

4) tGLRT with Data Imputation/Deletion: Our proposed
tGLRT detector, as per (20), is tested on datasets pro-
cessed to handle missing values by imputation or dele-
tion methods.

5) mGLRT with LOF: Our proposed mGLRT de-
tector, i.e., (18), is applied to datasets from which
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Fig. 4. PD versus missing data percentage by several detection methods:
BER = 1%, PFA = 1%, SNR =−10dB.

potential outliers have been removed using the LOF
method [47].

6) mtGLRT: Our proposed mtGLRT detector (8), which
is directly applied to the original dataset, inclusive of
incomplete and contaminated data.

It is important to note that data imputation was performed
using stochastic imputation based on a Gaussian model, as
elaborated in [16]. Specifically, the variance for each random
variable was first estimated as the sample covariance derived
from its observed components. Subsequently, random samples
were drawn from the Gaussian distribution in accordance with
the estimated covariance. The LOF method was applied using
MATLAB’s lof function, and, based on empirical observation,
the top 1% of data points with the highest anomaly scores were
removed, following the approach outlined by [47]. In com-
parison, our proposed mtGLRT method is distinguished by
its inherent capability to directly process both incomplete and
contaminated data, unlike other methods that rely on basic
techniques to manage missing data or address contaminations.
The degrees of freedom ν is set to be 1 according to the
previous discussion.

Fig. 4 compares detection performance across various meth-
ods as a function of missing data percentages, with the ini-
tial data generated at a BER of 1%. The analysis yields
several interesting insights. With the exception of the ideal
classical GLRT with clean data, all detectors experience de-
creased performance as the missing data percentage increases.
Notably, methods designed to directly manage incomplete
data, such as mGLRT with LOF and our proposed mtGLRT,
exhibit reduced sensitivity to higher rates of missing data.
In contrast, the classical GLRT, which relies on imputation
or deletion to handle missing data, demonstrates significantly
weaker performance. The Gaussian-based mGLRT method,
after outlier removal via the LOF approach, shows marked
improvement. The M-estimator based detector maintains com-
mendable performance at lower levels of missing data due

Fig. 5. PD versus BER by several detection methods: 10% missing data,
PFA = 1%, SNR =−10dB.

to its innate robustness against data contamination. However,
its performance deteriorates rapidly as the missing data per-
centage grows, reflecting a limited capacity to handle incom-
plete datasets. Our proposed mtGLRT detector consistently
outperforms the competition, maintaining the highest level of
detection effectiveness. This is attributed to the detector’s de-
sign, which is intrinsically robust to contamination and adept
at managing incomplete data. Fig. 5 assesses detection per-
formance versus BER, with datasets featuring 10% missing
values. All methods register a drop in performance with in-
creasing BER, yet detectors utilizing the t-distribution exhibit
less sensitivity to BER changes. The mtGLRT detector remains
superior, achieving the utmost detection accuracy among all
methods, with the exception of the ideal GLRT method applied
to clean data.

Fig. 6 illustrates the receiver operating characteristic (ROC)
curve, which represents the trade-off between the probability
of detection (PD) and the probability of false alarm (PFA),
for an experiment with 10% missing data and a 1% BER.
Our proposed mtGLRT method stands out, delivering detection
performance nearly equivalent to the classical GLRT method
with clean data. The tGLRT method, despite using imputa-
tion or deletion for missing data, performs marginally worse
than the mtGLRT due to its limited capacity to address in-
complete data. The M-estimator and mGLRT methods ex-
hibit moderate performance, surpassing the classical GLRT
that employs imputation and deletion, thanks to their improved
capability in dealing with contaminations and missing data.
The synthetic data experiment demonstrates that although basic
techniques exist to manage missing data and mitigate contami-
nation, the performance disparity between these techniques and
our mtGLRT method is substantial.

B. Real Data Experiments on Software-Defined Radio
Testbed

In this section, we validate our proposed robust detector
using real data collected from a software-defined radio testbed.
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Fig. 6. PD versus PFA by several detection methods: 20% missing data,
BER = 1%, SNR =−10dB.

Fig. 7. Experiment platform setup.

Our laboratory experiment employs an NI Universal Software
Radio Peripheral (USRP) X410 as the transmitter and eight
NI USRP X410s as receivers, each equipped with a single an-
tenna. Conducted in an indoor environment without GPS clock
availability, we synchronize the receivers using an NI Clock
Distribution Accessory (CDA) 2990 device. Fig. 7 illustrates
the experimental setup. The transmitter broadcasts at a carrier
frequency of 1.4GHz, using randomly-generated QPSK signals
at a precise baud rate of 20 kHz. The transmitter antenna is
connected to a 30dB Attenuator to simulate a weak signal
scenario. Operating at a sampling rate of 240 kHz and receiving
gain of 60 dB, the receivers feature an ADC configuration of 10
bits. The collected data is transmitted to a personal computer
via a wired connection. We manually flip the bits with a 1%
probability to simulate a 1% BER and randomly remove 10%
of the samples. Each detecting experiment is conducted using
1000 consecutive samples. Similar to previous synthetic data
experiment, the threshold γ for each method is calculated using

Fig. 8. Probability of detection on software-defined radio testbed (missing
percentage: 10%, BER: 1%) by several detection methods.

1000 realizations of recorded noise data, with the transmitting
gain set to 0 dB.

Fig. 8 depicts the detection probability of various methods
against the probability of false alarm. The observed trends and
relative performance rankings are similar to those from experi-
ments using synthetic data. The proposed mtGLRT method ex-
hibits superior performance with incomplete and contaminated
data. Although the performance of the tGLRT method, when
integrated with imputation and deletion techniques for miss-
ing data, is marginally lower, it still significantly outperforms
the alternative approaches in terms of detection. This suggests
that the robustness of our proposed mtGLRT detector in this
experiment may primarily stem from the employment of the
t-distribution. The real data experiment corroborates the effi-
cacy of the proposed mtGLRT detector in practical scenarios.

VI. CONCLUSION

In conclusion, this paper has presented robust methodolo-
gies for cooperative spectrum sensing designed to handle in-
complete and contaminated data. The complex t-distribution
is utilized to model data and accommodate missing data
elements. Additionally, we have developed the generalized
expectation-maximization based algorithms to address the as-
sociated maximum likelihood estimation challenges. Our nu-
merical experiments have underscored the robustness of these
proposed techniques in the presence of a high bit error rate.
This work substantially enhances spectrum sensing techniques
and provides more robust solutions capable of overcoming data
transmission imperfections.

APPENDIX

A. The Generalized Expectation-Maximization Algorithm

The generalized expectation-maximization algorithm is a
powerful iterative method that addresses challenging MLE
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problems involving missing data or latent variables [48]. By
incorporating the latent data Z, the EM algorithm enables the
conversion of the maximization of the observed data’s log-
likelihood, �(X |θ), into the maximization of a sequence of
simpler and more tractable problems.

In each iteration, the expectation maximization (EM) al-
gorithm computes Q(θ |θk), which represents the expected
log-likelihood function of the complete data log-likelihood,
�(X,Z |θ), with respect to the current conditional distribution
of Z given the observed data X and the current estimate of
the parameter θk. Then, the algorithm finds the updated pa-
rameter estimate θk+1 by maximizing Q(θ |θk). The EM algo-
rithm can be described as iteratively conducting following steps
until convergence:

• Expectation (E) Step: calculate the expected value of the
complete-data log-likelihood, with respect to the condi-
tional distribution of the latent variable given the observed
data under the current parameter estimates. This expecta-
tion is denoted as Q(θ|θk), and can be written as:

Q(θ|θk) = EZ|X,θk [�(θ;X,Z)]. (21)

• Maximization (M) Step: find the parameter that maxi-
mizes this quantity:

θk+1 = argmax
θ

Q(θ|θk) (22)

The convergence is generally determined by the change in
either the log-likelihood or the parameter estimates becoming
smaller than a preset threshold. By iterating through the ex-
pectation (E) and maximization (M) steps, the EM algorithm
effectively simplifies the optimization process and provides a
means to handle complex MLE problems involving missing
data or latent variables.

In lieu of determining a minimizer of the function Q(θ|θk),
it is proposed that we ascertain a point θk+1 such that
Q(θk+1|θk)≥Q(θk|θk). In other words, we aim for a sce-
nario that merely provides an improvement. This strategy paves
the way to the implementation of the generalized expectation-
maximization algorithm as outlined in [41].

B. The Analytical Form of Ak+1

By applying Lemma 2, we can establish that the condi-
tional distribution of xi,m given (τi,xi,o,Σ) follows a nor-
mal distribution. This distribution has a mean vector defined
as Σk

i,mo(Σ
k
i,oo)

−1xi,o and a covariance matrix described by
(Σk

i,mm −Σk
i,mo(Σ

k
i,oo)

−1Σk
i,om)/τi. Then it is straightforward

to have EXm,τ |Xo,Σk

[
τixix

H
i

]
= τ̄ki x̄

k
i (x̄

k
i )

H +Φk
i with τ̄ki =

EXm,τ |Xo,Σk [τi], x̄k
i = EXm,τ |Xo,Σk [xi], and Φk

i is a p× p
matrix whose (l, j)-th element is zero if either xl,i or xj,i is
observed, otherwise is the corresponding element of the condi-
tional covariance matrix of xi,m but ignoring τi.

Lemma 2 (Conditional Gaussian Distribution [49]): Sup-
pose (x,y)∼N (μ,Σ), then we have

y |x∼N (μy|x,Σy|x), (23)

where

μy|x = μy +Σy,xΣ
−1
x,x(x− μx),

Σy|x =Σy −Σy,xΣ
−1
x,xΣx,y. (24)

Note that, given xi,o and current Σ, the conditional pdf
of τi is

p(τi |xi,o,Σ)

∝ p(τi,xi,o |Σ)

= p(xi,o | τi,Σ)p(τi |Σ)

∝
exp

(
−xH

i,o(
Σ−1

i,oo

τi
)−1xi,o

)

det(
Σi,oo

τi
)

(τi)
ν
2−1

exp
(
−ν

2
τi

)

∝ τ
ν
2+pi−1
i exp

(
−xH

i,oΣ
−1
i,ooxi,oτi −

ν

2
τi

)
. (25)

Comparing the above equation with (7), we can find that
τi |xi,Σ follows a gamma distribution:

τi |xi,Σ∼ Gamma
(ν

2
+ pi,

ν

2
+ xH

i,oΣ
−1
i,ooxi,o

)
. (26)

Then the conditional mean of τi is simply

EXm,τ |Xo,Σk [τi] =
ν/2 + pi

ν/2 + xH
i,oΣ

−1
i,ooxi,o

. (27)

C. Algorithm Development for Problem (16)

Given S ∈ C
p×p a complex-valued positive semidefinite ma-

trix and r < p, we consider the following problem:

max
H,ψ

log det(Σ−1)− Tr
(
Σ−1S

)

s.t. Σ=HHH + Diag (ψ) ,

H ∈ C
p×r,ψ ∈ [ψL,ψU]. (28)

Naturally, this problem presents significant challenges due to
its non-convex objectives and constraints. We propose to tackle
Problem (28) by extending the algorithm presented in [40] to
accommodate complex numbers and taking into account the
upper bound constraint of the variable ψ.

More specifically, we will initially incorporate the variable
H into the variable ψ by applying Proposition 3.

Proposition 3: For a fixed ψ, the optimal H to Problem
(28) is

H�(ψ) = Diag(ψ
1
2 )[u1, . . . ,ur]Diag(λ̃), (29)

where {uj , λj}pj=1 are the eigenvectors and eigenvalues of

Diag(ψ− 1
2 )SDiag(ψ− 1

2 ) in the descending order, and λ̃=
max

(
[λ1, . . . , λr]

T − 1r, 0
)
.

Proof: See [31, Lemma 4] or [40, Proposition 2].
Subsequently, Problem (28) can be reformulated as the fol-

lowing new Problem (30) that depends solely on ψ.

max
ψ

log det(Σ−1)− Tr
(
Σ−1S

)

s.t. Σ=H�(ψ)(H�(ψ))H + Diag (ψ) ,

ψ ∈ [ψL,ψU]. (30)
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Fig. 9. The empirical distributions of test statistics using classical GLRT under different SNR conditions, where the blue bins are derived from clean noise
and are for reference only.

Fig. 10. The empirical distributions of test statistics using tGLRT under different SNR conditions, where the blue bins are derived from clean noise and
are for reference only.

Furthermore, by defining the alternative variable α=ψ−1

and utilizing Proposition 4, we can adeptly tackle Problem (30)
using the majorization-minimization (MM) technique [50].

Proposition 4: Let α=ψ−1, Problem (28) is equivalent to

min
ψ−1

U ≤α≤ψ−1
L

f(α) = f1(α)− f2(α), (31)

whose majorization problem at α is

min
α

f̌(α) =

p∑

j=1

(
Sjjαj − logαj −∇j(α

l)αj

)

s.t. ψ−1
U ≤α≤ψ−1

L , (32)

where f2(α) =
∑r

j=1 (max{1, λj} − logmax{1, λj} − 1),
f1(α) =

∑p
j=1(Sjjαj − logαj), UDiag(λ)UH is the

eigenvalue decomposition of S∗ = Diag(α
1
2 )S Diag(α

1
2 ),

∇(α) = diag(Diag(α−1)UDUHS∗) with

Djj =

{
max{0, 1− λ−1

j } 1≤ j ≤ r

0 otherwise.
(33)

Proof: Directly extending [40, Corollary 2] to the complex
number case completes the proof.

This entails iteratively solving Problem (32) and updating α
with its optimal solution. Given that the elements of α are inde-
pendent and the objective function is convex in the majorization

Algorithm 2 : A MM algorithm for Problem (28).

1: Initialize H0, ψ0 and α0 = (ψ0)−1 and Σ0 =
H0(H0)H +Ψ0.

2: for l = 0, 1, 2, . . . do

3: αl+1 =
[
diag(S)−∇(αl))

]ψ−1
L

ψ−1
U

;
4: l← l + 1;
5: Terminate when converges;
6: end for
7: Recover ψ� = (αl)−1 and H� via Proposition 3.
8: Return Σ� =H�(H�)H + Diag(ψ�).

Problem (32), we can determine its optimal solution through a
closed-form expression. Specifically, the update rule for α is
expressed as:

αl+1 =
[
diag(S)−∇(αl))

]ψ−1
L

ψ−1
U

. (34)

Upon convergence, we can retrieve the optimal ψ� =α−1

and H� using Proposition 3. The comprehensive algorithm is
delineated in Alg. 2, which is guaranteed to converge to a
stationary point of Problem (31), i.e., the equivalent formulation
of Problem (28), as affirmed in [50].
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D. Empirical Distribution Comparison Between ξGLR and
ξtGLR

We compare the empirical distribution of test statistics from
the classical GLRT and proposed tGLRT under different SNR
conditions in Figs. 9 and 10. The trend of splitting the groups
of test statistics between pure noise and contaminated data
validates the superior performance of the tGLRT detector. In-
terestingly, as shown in Fig. 9(a), when the primary signal is
non-existing, the empirical distribution of GLRT test statistics
using contaminated data has significantly fatter tails than that
using clean data. However, as shown in Fig. 10(a), when the
primary signal is non-existing, the empirical distribution of
tGLRT (ν = 2) test statistics using contaminated data is signif-
icantly left-shifted compared with that using clean data. This
can be explained by the fact that the covariance matrix is ill-
estimated in the GLRT method with contaminated data, leading
to diversely distributed test statistics. The covariance matrix
is robustly estimated in the tGLRT method. But the sample
covariance matrix tends to be more diagonally dominated, i.e.,
the diagonal elements become larger with contaminated data.
Then, the test statistics tend to be smaller if fed with these
contaminated data. This implies that the classical GLRT would
require a higher threshold than usual to achieve the desired
PFA for contaminated data, which shall further deteriorate its
detecting performance in practice.
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