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Solving High-Order Portfolios via Successive Convex
Approximation Algorithms

Rui Zhou

Abstract—The first moment and second central moments of
the portfolio return, a.k.a. mean and variance, have been widely
employed to assess the expected profit and risk of the portfolio.
Investors pursue higher mean and lower variance when designing
the portfolios. The two moments can well describe the distribution
of the portfolio return when it follows the Gaussian distribution.
However, the real world distribution of assets return is usually
asymmetric and heavy-tailed, which is far from being a Gaussian
distribution. The asymmetry and the heavy-tailedness are char-
acterized by the third and fourth central moments, i.e., skewness
and kurtosis, respectively. Higher skewness and lower kurtosis are
preferred to reduce the probability of extreme losses. However,
incorporating high-order moments in the portfolio design is very
difficult due to their non-convexity and rapidly increasing compu-
tational cost with the dimension. In this paper, we propose a very
efficient and convergence-provable algorithm framework based
on the successive convex approximation (SCA) algorithm to solve
high-order portfolios. The efficiency of the proposed algorithm
framework is demonstrated by the numerical experiments.

Index Terms—High-order portfolios, skewness, kurtosis,

efficient algorithm, successive convex approximation.

I. INTRODUCTION

ODERN portfolio theory has developed rapidly since

Harry Markowitz’s seminal paper in 1952, which pro-
posed the mean-variance framework to pursue the trade-off
between maximizing the portfolio’s profit and minimizing its
risk [1]. The profit and risk of a portfolio are measured by the
mean and variance, i.e., the first moment and the second central
moment, of the portfolio return. The mean-variance framework
assumes that the investors prefer a quadratic utility or that the
returns of assets follow a Gaussian distribution [2].

However, the mean-variance framework is not widely used
in the real market investment. One of the main reasons is that
returns of assets in real markets are seldom Gaussian distributed.
They are usually asymmetric and more likely to contain out-
liers or exhibit a heavier tail, making the portfolio return also
asymmetric and heavy-tailed [3], [4]. Meanwhile, most investors
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would be willing to accept lower expected profit and higher
volatility in exchange for more positively skewed and less
heavy-tailed portfolio return [S]-[7]. This aspiration has been
beyond the characterization of the mean-variance framework.
Apart from that, the investors might have different tastes in utility
functions. Sometimes the shapes of these utility functions can
be significantly different from the quadratic one.

To make up the drawbacks of the mean-variance framework,
we need to take high-order moments of the portfolio return into
consideration. The asymmetry and heavy-tailedness of portfolio
return are well captured by its third and fourth central moments,
i.e., skewness and kurtosis. A higher skewness usually means
that the portfolio return admits a more positively skewed shape,
while the lower kurtosis usually corresponds to thinner tail. We
can extend the mean-variance framework by directly incorpo-
rating the high-order moments to obtain the mean-variance-
skewness-kurtosis (MVSK) framework, where we shall try to
strike a balance between maximizing the mean and skewness
(odd moments) while minimizing the variance and kurtosis (even
moments) [8]-[10]. Besides, such extension can be seen as
approximating a general expected utility function with its Taylor
series expansion truncated to the four most important order
terms [11]. There also exist some other high-order portfolios
within the MVSK framework. For example, the MVSK tilting
portfolios [12] are obtained by “tilting” a given portfolio to the
MVSK efficient frontier.

Although there are many advantages of the MVSK frame-
work, solving such high-order portfolio optimization problems
is quite challenging. First, the third and fourth central moments
are both non-convex functions, making the problems in general
NP-hard [13]. These problems are traditionally solved by some
metaheuristic optimization tools, e.g., differential evolution [9]
and genetic algorithms [10]. However, they are essentially per-
forming a time-consuming random search [14], [15]. A method
based on the Difference of Convex (DC) algorithm was proposed
to solve the MVSK portfolio problem to a stationary point [8]. It
was further improved based on the Difference-of-Convex-Sums-
of-Squares (DC-SOS) decomposition techniques [16]. However,
the DC method may converge too slowly and it is only applicable
to small-size problems. Second, the complexity of computing the
value or the gradients of high-order moments grows rapidly with
the problem dimension. The classical gradient descent method
and backtracking line search also become inapplicable when the
problem dimension grows large. Therefore, it is meaningful and
necessary to design efficient algorithms for solving high-order
portfolios.
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To this end, the major goal of this paper is to develop an
efficient algorithm framework based on the successive convex
approximation (SCA) to solve high-order portfolios. The SCA
algorithm solves the original intractable problem by constructing
and solving a sequence of strongly convex approximating prob-
lems [17]-[20]. In this paper, we propose an easy approach to
construct the approximation for the non-convex functions. This
allows to construct a sequence of convex problems compatible
with existing efficient solvers that can obtain the solutions to
the original high-order portfolio optimization problems. The
convergence of the proposed algorithm framework to a station-
ary point is established. In addition, owing to their low com-
putational complexity, the algorithms are amenable for high-
dimensional applications. Extensive numerical experiments are
performed to corroborate our claims.

The paper is organized as follows. We first give the pre-
liminary knowledge on the high-order moments of portfolio
return in Section II and then pose the problem formulations
in Section III. The SCA algorithm and its special cases are
introduced in Section IV. In Section V and Section VI, we
derive our algorithms based on the SCA algorithm to solve the
high-order portfolios. The complexity and convergence analysis
of the proposed algorithms are discussed in Section VIIL. In
Section VIII, we present some other formulations of high-order
portfolio problems and indicate the applicability of our proposed
algorithm framework. The numerical experiments are given in
Section IX. Finally, the conclusion of this paper is summarized
in Section X.

II. PRELIMINARIES: THE MOMENTS OF PORTFOLIO RETURN

Denote by r € RY the returns of N assets and w € RY
the portfolio weights. The return of this portfolio is w’r with
expected value, i.e., first moment,

¢1(w) =E[w'r] =w'p, (1)

where o = E(r) is the mean vector of the assets’ returns. Denote
by r = r — p the centered returns, the ¢g-th central moment of
the portfolio return is E[(w’r — w’ 11)?] = E[(wTt)4], which
gives us the follows:
¢ The second central moment, a.k.a. variance, of the portfolio
return is

¢2(w) =E {(WTf')ﬂ
=E [wa‘f‘Tw]
=wlTw, (2)

where 3 = E[#t7] is the covariance matrix.
e The third central moment, a.k.a. skewness, of the portfolio
return is

=wid(waw), 3)

where ® = E[r(t7 ® t71)] is the co-skewness matrix.

e The fourth central moment, a.k.a. kurtosis, of the portfolio
return is

¢4 (W) =E [(WT ) }

T =T =T

w it wil wi w]

=E[
:E[WTI'( @f") (wew)i'w]
E[

ot ®f'T)(W®w®W)]
:WT\II(W®W®W), (€))

where ¥ = E[f(¥7 ® t7 ® #71)] is the co-kurtosis matrix.
The gradients of ¢1(w) and ¢o(W) w.r.t. w are p and 2Xw,
while their Hessians are 0 and 232, respectively. But the gradient
and the Hessian of ¢3(w) and ¢4(w) are more complicated to
derive and we give next some useful results.
Lemma 1: The gradient and Hessian of the skewness and
kurtosis are given by:

Vos (w) =3P (W w),
Voy (W) =4T (WRQWRW),
V23 (w) = 6@ (I w),
Vi (w) =120 (I wew). 5)
Proof: See Appendix A. |

Corollary 2: The gradient and Hessian of the skewness and
kurtosis admit the following relations:

Vs (w) = %v%g (W) w, (6)
Vou(w) = %V2¢4 (W) w. @)

Proof: Using Lemma 1, we have 3¢3(w) = w’ Ves(w).
Then taking the derivative of both sides w.r.t. w, we get
3Veps(w) = Vo3(w) + V2¢3(w)w, which further leads to (6).

Equation (7) can be derived similarly. ]
Note that V2¢s(w) =61, @ wy and V3¢ (w) =
12 Z,JCVI 1 (k’l)wkwl can be easily obtained from Lemma

1, where, with some abuse of notation, <I>( ) = = E[;7;7)] and
\Il(k D _ = E[F;7 T 71 71] are the corresponding elements of matrices
o] and v,

A high expected value and low variance of the portfolio
return are naturally chased by investors to increase the profit
and decrease the risk. Besides, in the non-Gaussian case, a
high skewness and low kurtosis are also desirable as they can
reduce the probability of extreme losses. As shown in Fig. 1, a
positively skewed portfolio return is significantly less likely to
suffer extreme losses than a negatively skewed one. Besides, we
can see from Fig. 2 that a lower kurtosis shows also a thinner tail,
which alleviates the appearance of extreme returns. In general,
investors have a preference for odd moments while dislike even
moments.
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Fig. 2. The implication of kurtosis.

III. PROBLEM FORMULATION
A. MVSK Portfolio

The classical Markowitz’s mean-variance (MV) portfolio [1]
is obtained by solving the following problem:

minimize —wlp+\w! Zw
subjectto we W, ®)

where A > 0 is a parameter striking a balance between the
expected return (defined by the mean w’ 1) and the portfolio
risk (defined by the variance wT3w), W is the feasible set of
portfolio weights, which we set as

W= {wi'w=1,|w| <L}, ©)

where L > 1 is the leverage constraint of the portfolio [21].
Specifically, when L = 1, WV reduces to the no shorting con-
straint: {w|17w = 1, w > 0}. The mean and the variance are
actually the first moment and the second central moment of the
portfolio return. However, the real world assets return usually
appears to be asymmetric and with extreme values, which is
beyond the characterization of the first two moments. It is
reasonable to consider the third and fourth central moments
in the portfolio design. A natural way to incorporate the two
higher-order moments is revising the objective of problem (8)
to obtain the mean-variance-skewness-kurtosis portfolio design
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problem [8]-[10]:
minimize (W) = —A1¢1 (W) + Aad2 (W)

— X303 (W) + Aapa (W)

subjectto w € W, (10)

where A1, A2, A3, Ay > 0 are the parameters for combining the
four moments of the portfolio return.

B. MVSK Tilting Portfolio

Directly solving the problem (10) leads us to the MVSK
efficient frontier, where we cannot improve any moment without
impairing other moments. However, the investors might want to
modify another existing portfolio w( toward a MVSK efficient
portfolio. This can be done by tilting these portfolios in a direc-
tion that increases their first moment and third central moment
and decreases their second and fourth central moments [12],i.e.,

ma)v<vir(r§1ize 0
subjectto ¢y (w) > @1 (wo) + di6,
b2 (W) < 2 (Wo) — dad,
¢3 (W) > ¢3 (Wo) + dsd,
P4 (W) < da (Wo) — dsf,
(w—wo)" X (w—wp) < r?,
weW,d >0, (11)

where d = [dy,ds,ds,ds] >0 is the tilting direction,
oi(wo),7=1,2,3,4 are the moments of wy (starting point)
for tilting, £ determines the maximum tracking error volatility
of w with respect to the reference portfolio wy.

C. Difficulty of Solving High-Order Portfolios

The MVSK portfolio optimization problem (10) and MVSK
tilting portfolio optimization problems (11) are very difficult to
solve for two reasons:

1) Non-convexity: the third and fourth central moments, i.e.,
¢3(w) and ¢4(w), are non-convex in w, making both
problems (10) and (11) non-convex problems.

2) Computational complexity: ¥ is of dimension N x N3,
which means the memory complexity is O(N*) and the
computational complexity of one single evaluation of the
fourth moment is O(N*). Lemma 1 shows that the com-
putational complexity for computing the gradient of the
fourth central moment is also O(N?). Then the general
gradient descent method and backtracking line search are
inappropriate to the high-order portfolio problem.

Due to the non-convexity, the classical convex optimization
methods are not applicable, while the general gradient method
is also not applicable due to the expensive cost of gradient
computation. It is necessary to design a specific algorithm to
efficiently solve high-order portfolios. Such an algorithm should
converge fast and avoid evaluating the gradients or value of
high-order moments frequently. This paper proposes a very
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efficient algorithm framework to solve the high-order portfolio
optimization problem based on the SCA algorithm. But before
that, some background on the SCA algorithm is due in the next
section.

IV. THE SUCCESSIVE CONVEX APPROXIMATION ALGORITHM

The successive convex approximation (SCA) algorithm is
a general framework especially designed for solving non-
convex optimization problems. Instead of solving the original
intractable optimization problem, it resorts to successively solv-
ing a sequence of strongly convex approximating problems. The
convergence of the SCA algorithm can be guaranteed under mild
assumptions.

Specifically, consider a non-convex constrained optimization
problem,

minimize  f (x)
subject to g; (x) <0, i=1,...,m,
x €K, (12)

where f(x) and g;(x) are non-convex functions and K is a
convex set. In order to solve the problem (12), which is directly
intractable, we may turn to successively solving a sequence of
strongly convex approximating problems. Denote by x* the cur-
rent iterate at k-th iteration, then the SCA algorithm constructs
a strongly convex approximating problem for (12) as [19]:

F(xx*)

subject to §; (x;x*) <n(x¥),i=1,...

minimize

X
7m7
Ix — x| < 8,

x €, (13)

where f(x;x*) and §;(x;x") are the approximating functions
for f(x) and g;(x) at x*, the quantity 7(x*) in the surrogate
constraints serves to suitably enlarge the feasible set of the sub-
problem to ensure it is always nonempty, and 3 is a user-chosen
positive constant. The term 7(x*) is defined as

n (xk) £(1-0) max {gi(xk)Jr}

+ f min {max{gi(x;xk)+} ‘Xé /C}, (14)

with 0 € (0,1). The general SCA algorithm generates the se-
quence {x*} as

xF+1 ¢+ solve the problem (13),
X+ = xk ok (gh L xk)

where at each iteration, the first stage is generating the descent di-
rection x**1 — x*_ and the second stage is updating the variable
along the solved descent direction with a step-size v* satisfying

15)

[o.¢]
lim v* =0 and ) ~* = oc. (16)
k=0

k—00
The generated sequence {xk} is proven to converge to a
generalized stationary point of the original problem (12) under
the following mild assumptions [19]:

Assumption 1: Let Og and Ok be open neighborhoods of
{x|||x — x*||oc < B} and K and such that:

On original problem (12):

Al) K is an nonempty, closed, and convex set.

A2) f(x) and g;(x) are continuously differentiable with lo-
cally Lipschitz gradients on an open set containing /.

On surrogate function f :

Bl) f (x;y) is a strongly convex function on Og for every
y € K with modulus of strong convexity ¢ > 0 independent of
y;

B2) f(x; y) is continuous on Og x Ok;

B3) v, f(x;y) is continuous on Og x Ox;

B4) V1 f(y;y) = Vf(y) forevery y € K;

On surrogate constraint g;:

C1) g;(x;y) is a convex function on Og for every y € K;

C2) §;(x;y) is continuous on RY x Oy;

C3) gi(x;y) = gi(y) forevery y € K;

C4) V1Gi(x;y) is continuous on Og x O;

C3) v1gi(y;y) = Vf(y) forevery y € K;

where V1 f (u;y) and V1g;(u;y) denote the partial gradient
of f(u; y) and g;(u;y) evaluated at u.

We can simplify the surrogate problem (13) accordingly when
the following assumptions are additionally satisfied:

1) if K is bounded, then the constraint ||x — x*||, < 8 can

be ignored;

2) if Vf(x) is Lipschitz continuous on K and g, (x;x*) >
gi(x) is satisfied for every x € K, then the constraint || x —
x"|ls < /3 can be ignored and n(x*) = 0 [22];

3) if Vf(x) is Lipschitz continuous on K and §;(x;x*) =
gi(x) is satisfied for every x € K, then the algorithm
reduces to the vanilla SCA algorithm. The constraint
|x — x*||c < B can be ignored and 7(x*) = 0 [20];

4) if K is bounded, f(x;x*) > f(x) and §;(x; x*) = g;(x)
are satisfied for every x € C, then the algorithm reduces
to the classical majorization-minimization (MM) method
with convex majorization functions. The constraint ||x —
x¥||c < B can be ignored, n(x*) =0, and 7* can be
simply fixed to 1 [17], [23].

V. SOLVING THE MVSK PORTFOLIO PROBLEM VIA SCA

In this section, we discuss how to solve the problem (10) via
the SCA algorithm. We first investigate the Difference of Convex
(DC) programming approach for solving the problem (10) [8],
which is actually a special case of the MM algorithm [17].
Inspired by this, we herein propose another MM based algorithm
by constructing a sequence of tighter upper bound functions.
Thus fewer iterations can be expected. However, we further
recognize that the MM algorithm might still be too conservative
as it requires constructing a global upper bound for the objective
function. Therefore, we further propose a general SCA based
algorithm for solving the problem (10), where a strongly convex
approximating function is constructed for the objective function.

A. Preliminary Approach: DC Algorithm

A DC approach method was proposed in [8] to solve problem
(10) by recognizing that V2 f(w) has a bounded spectral radius
under the bounded feasible set W .
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Algorithm 1: DC method for Problem (10).

1: Initialize w® € W and compute Tpc > p(V
in Lemma 3.
fork=0,1,2,...do
Calculate V f(w").
Solve the problem (19) to update w*+!
Terminate loop if converges.
end for

2f(w)) as

AN A

Lemma 3: [8] Given w > 0, 17w = 1, we have

p(V2F (W) < 20T +6Xs max 2 20|

J,k=1

+ 12 max Z o,

k=1

a7

where p(X) is the spectral radius of X.

The bound for p(V? f (w)) provided in Lemma 3 can be easily
extended under the constraints in (9) (where instead of no-
shorting w > 0 we allow some leverage of L with |w||; < L)
to

p (V2F (W) < 20)1%]|w +6As L max Z 2]
jk? 1

N
2 (kD)
+1204 L7 max >

T k=1
Then we can represent f(w) as

fw) = 2owlw -

5 (Bw w — s (w)),

where both Z¢w”w and Bw’w — f(w) are convex func-
tions in w 1f mc > p(V2f(w)). Then the classical concave-
convex procedure (CCCP) can be employed here by iteratively
linearizing the second (concave) term, i.e.,

(18)

™DC __ T

minimize w'w —w
w

" (ew" = f (w"))

subjectto w e W, (19)

where V f(w")=—A\1V¢1 (W) + X2V (W) —
A1Vo4(WF). It is already a convex problem and can be easily
solved. Furthermore, we can rewrite it as a convex quadratic
programing (QP) problem by introducing a variable u € R¥:

™C__ 71

minimize TW w—w’ (TDch - vf (Wk))

w,u

subject to 1Tw=1,—u<w<u,1Tu<L, (20

which can be very efficiently solved by a QP solver. In the rest of
the paper, we will always use this trick to transform the ¢; -norm
constraint to linear inequality constraints. The complete DC
algorithm for solving the problem (10) is given in Algorithm 1.

A3V 3 (wWh)+
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B. Preliminary Approach: MM Algorithm

The DC algorithm is a special case of the more general MM
algorithm, which works by solving a sequence of global upper
bound problems of the original problem [17], [24]. Inspired by
the DC approach discussed in the above section, we propose a
tighter upper bound function for f(w). Note that the objective
in the surrogate problem (19) can be rewritten as

TDTCWTW — e (W k)Tw +Vf (Wk)TW + const.
= f (Wh) + 9f (W) (W wh) + T fw - wh L @)

It is actually a global upper bound function of f(w) [17]
at w*. However, denoting f(W)= fex(W)+ facvx(W)
with fcvx(w) = _)‘1¢1 (W) + A?QS(W) and fncvx(w) =
—A303(W) + A\yda(w), we find foyx(w) is already a convex
function. Then we can merely construct the upper bound
function for fucyx(W). Inspired by Lemma 3, we propose a
tighter bound for p(V?2 foevx (W)) as follows.

Lemma 4: Under the constraints in (9), we have

N
2
(7o (W) < Ol i 3 o 195
]_
N
4+ 12)\4L2 max max |\Il(kl)|
SIS £ 12kI=N
(22)
Proof: See Appendix B. |

Then we can construct, compared with the upper bound func-
tion actually used in DC method, a much tighter upper bound
function fuevx (W) for foevx (W) at w¥ as [17]:

9" (w W)

(23)

fncvx (Wawk) = fncvx (Wk

+ = lw

)+ V faewx (W
w3,

where V foevx (WF) = —A3Va3(WF) + A1 Vs (W) and iy >
p(V2 faevx(W)) can be calculated via Lemma 4. Then a tighter
global upper bound function can be constructed for f(w) as
F(wW, W*) = fox (W) + foevx (W, w"). At each iteration of the
MM algorithm, we need solve the following surrogate problem:

minimize  w’Q*w + w’¢g"
w

subject to w € W, (24)
where QF = \,X + 2MT and G = M+ Y foonx (WF) —
MW, It is a strongly convex QP problem and can be very
efficiently solved by a QP solver. The complete MM algorithm
for solving the problem (10) is given in Algorithm 2. Compared
with the original DC algorithm, the MM algorithm does not
introduce any additional computation, while we can expect faster
convergence (as is verified in the numerical experiments of
Section IX-A).
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Fig. 3. Illustration of approximating functions.

Algorithm 2: MM Method for Problem (10).

1: Initialize w® € W and compute
™M > P(V2 faewx(W)) as in Lemma 4.
for k=0,1,2,...do
Calculate V foeyx (WF).
Solve the problem (24) to update w**1.
Terminate loop if converges.
end for

SAISAN

C. O-MVSK Algorithm

The MM-type methods require constructing a global upper
bound approximation, which is sometimes criticized to be too
conservative to capture the global landscape of the objective
function [18]. Therefore, in this section, we capitalize on the
SCA framework and propose the Q-MVSK algorithm to solve
the problem (10) via a strongly convex approximation (need not
be a global upper bound) for the objective. More specifically,
we still leave the convex part fe,x (W) untouched but construct
a second-order approximation for f.yx(W) as

fncvx (Wawk)
= fncvx (Wk) + vfncvx (Wk)T (W - Wk)

+ E (wa’“)THk

2 ncevx

where HE._ is an approximation of V2 fy.(wF) with
V2 frevx (WF) = = X3V203(WF) + A\ V24 (WF) from Lemma
1, and 7 >0 is to preserve the strong convexity of
foevx (W, w"). Note that 7, can be set to 0 when Ay > 0. HF,
is a positive semidefinite matrix close to V2 f,.x (W*) obtained
as follows.

Lemma 5: [25] The nearest symmetric positive semidefinite
matrix in the Frobenius norm to a real symmetric real matrix
X is UDiag(d; )U”, where UDiag(d)U7 is the eigenvalue
decomposition of X.

Then we have an approximating function for f(w) as
f(w,wk) = fewx(W) + fncvx(w,wk). In Fig. 3, the three ap-
proximating functions are illustrated along a line on WW. We can
see that f(w, w") can best describe the global behaviour of

f(w). At each iteration of the SCA algorithm, we need solve

Tw
(w—wh) + Zllw —wh[3, @25

Algorithm 3: Q-MVSK Algorithm for Problem (10).

1: Initialize w® € W and pick a sequence {7*}.

fork=0,1,2,...do
Calculate V foex (WF), HE, .
Solve the problem (26) to obtain w*1.
whtl = wk + ,yk(‘;vk-&-l _ Wk)
Terminate loop if converges.

end for

AR O e

the following surrogate problem:
minimize w’Q*w + w’q"
w

subjectto w e W, (26)

where QF = \X +1HE, + I and G =-\p+
V foewx (WE) — HE wF — 7wk Tt is a strongly convex
QP problem and can be very efficiently solved by a QP solver.
The complete Q-MVSK algorithm for solving the problem (10)
is given in Algorithm 3.

VI. SOLVING THE MVSK TILTING PORTFOLIO
PROBLEM VIA SCA

In this section, we discuss how to solve the MVSK tilting
problem (11), which we rewrite as

minimize —§

w,0

subjectto ¢, (w,0) <0,i=1,...,5

weEW,§>0, 27)
where
g1 (W, 0) = ¢1 (Wo) — ¢1 (W) + did,
92 (W,0) = ¢2 (W) — d2 (Wo) + d2,
g3 (W,0) = ¢3(Wo) — ¢3 (W) + ds,
g1 (W,8) = ¢4 (W) — da (Wo) + dad,
g5 (W,0) = (W — Wet) ' B (W — Weer) — 7. (28)

Note that g;(w,d),7 = 1,2,5 are all convex functions, while
gi(w,0),i = 3,4 are both non-convex functions. We will next
explore several options to deal with problem (27), which con-
tains non-convex constraints.

The classical way for solving such constrained problem is
the interior-point method (IPM), a.k.a. barrier method, which
adds the indicator functions for the inequality constraints to
the objective and approximates them with logarithmic barrier
functions [26]. The IPM method can be employed to the problem
(11) and transform it to

5

— 16 — Y log (—g; (W, 9))

i=1

minimize

w,0

subjectto w e W,d >0, (29)

wheret > (isaparameter that sets the accuracy of the barrier ap-
proximation. Then we could solve the problem (29) via a general
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gradient descend method or SCA algorithm. However, due to the
implicit constraint g;(w, d) < 0, a line search is compulsory at
each iteration to guarantee a feasible update of (w,d). As we
have discussed before, the computational complexity of a single
evaluation of g4(w,d) is O(N*). Then the line search is too
computationally expensive to be practical in this problem.

Another way to solve problem (27) could be by constructing
a global upper bound approximation for all the non-convex
constraints and solve a sequence of inner convex approximating
problems. Using the upper bound construction procedure in Sec-
tion V-B, we can easily construct an inner convex approximating
problem for problem (27) at w* as:

e Ts kN2 Tw
minimiz — —(0 — —_—
im e 0+ 5 (06— + 5 |w

subjectto ¢; (w,0) <0, i =1,2,5,
gj (w, 8w, 6%) <0, j=3,4,
weW, 0 >0,

- w3

(30)

where §;(w,d; w¥, %) is the global upper bound of g;(w, )
at (w”, %), which can be constructed as in Section V-B. The
problem (30) is a convex quadratically constrained quadratic
programing (QCQP) problem and can be solved via several
solvers. However, we can observe from Fig. 3 and the numerical
experiments in Section IX-A that such upper bound is very loose
and the convergence is slow.

Instead, we propose constructing convex approximations (al-
though not upper bounds) for the non-convex constraints in the
following.

A. Preliminary Approach: L-MVSKT Algorithm

The most classical choice, as mentioned in [19], is approx-
imating the objective function by a quadratic function while
linearizing all constraints. Therefore, we herein propose the L-
MVSKT algorithm by linearizing all the non-linear constraints
in problem (11), i.e., the surrogate problem is

minimize
subjectto ¢ (w,d) <0
gj(w75;wk,5k) < n(wk,ék),j =2,3,4,5
weW, 0 >0, 3D

where g;(w, §; w”, §%) is the linear approximation of g;(w, d)
at (w*, §%) with

gj(wvé;wka(sk)
= g1 (W*,0%) + Vwy; (Wk75k)T (w —w")
+ Vsg; (W, 0%)T (5 - 6%),5 = 2,3,4.

T Tw
— 0 5 (60" 4 T lw — wh 3

(32)

Besides, n(w", 6%) here can be computed as

n(w, &)
£ (1-6) max { ; (Wk %) }
o j=2.3.4,5 9i U+

{!?j (W75;W’“,5k)+} | (w,0) € W} ,
(33)

+ 6 min max
w, | j=2,3.4,5

J
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Algorithm 4: L-MVSKT Algorithm for Problem (11).

1: Initialize w® € W and pick 75, 7w and a sequence

{*}.

2: fork=0,1,2,...do

3:  Calculate V3 (wF), Vou(wh).

4:  Solve problem (35) and compute n(w*, %) as in
(33).

5:  Solve problem (31) to obtain w**1.

6 whtl = wk R (wh T — whk),

7 Terminate loop if converges.

8: end for

where W is a convex set defined as

W= {(w,8) |weW,g1(w,5) <0,6 >0}. (34)

The second term in equation (33) is obtained as ¢ from solving
the following problem:
minimize ¢

w,0,t
subjectto g; (w,8;w",6%) <t, j=2,3,4,5,

(w,8) € W,t > 0. (35)

Problem (31) is a convex QP problem and problem (35) is a linear
programing (LP) problem. Both of them can be very efficiently
solved by a QP solver and a LP solver, respectively. The complete
L-MVSKT algorithm is given in the Algorithm 4.

B. O-MVSKT Algorithm

In the above section, we have proposed the L-MVSKT algo-
rithm for solving the MVSK tilting problem (11). However, it
requires us to linearize the tractable convex quadratic constraints
and the simple linearization is rarely regarded as a proper
approximation for non-convex constraints. In Section V-C, we
have proposed a quadratic approximation for the third and fourth
central moments. It shows great advantages from the numerical
experiments presented in Section IX-A. Therefore, similar to
Section V-C, we can construct a quadratic approximation for the
non-convex constraints in problem (11) while not approximating
the already convex constraints, i.e.,

minimize

w)

subjectto g; (w,d) <0, i =1,2,5,

T . Tw
=0 (0= 0"+ Slw — w3

gj (W7§awk76k) S n (Wka(sk)u ] = 374u
weWw,d>0. (36)

Here g;(w, 6; w¥_ &%) is the quadratic approximating function
of gj(w,d) at (wk, o%):

gg(w,é;wk,dk)
= ¢3 (wo) — ¢3(Wk) +dsd — V¢3(Wk)T(W - Wk)

1
+ §(W — Wk)TH’(%(W — Wk),

ga(w, d; wh, 6’“)
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Algorithm 5: Q-MVSKT Algorithm for Problem (11).

1: Initialize w® € W and pick 75, 7w and a sequence

{*}.

2: fork=0,1,2,...do

3:  Calculate Vo3 (w¥), Vo (w"), HY, and HY,.

4: Solve problem (40) and compute 7(w", 6%) as in
(38).

5 Solve problem (36) to obtain w**1.

6wkt = wk 4 R (whtl — whk),

7 Terminate loop if converges.

8: end for

= g1 (W) — da (Wo) + dud + Vu (W) (W — W)

1
+ i(w - wk)TH’,},(w - wk),

with H% and HY, being the PSD approximating matrixes for
—V2¢p3(w") and V2¢4(wF). n(w", %) can be computed from

n (w", &%)

= (1-6) max {o5 (w*,5%), }

(37)

. ~ Lk sk A
+9%{?{j@%ﬁ{gj (w,0;w", 8 )+} | (w,0) € W},
(38)
where W is a convex set defined as

W= {(w,0)|weW,5>0,g (w,0) <0,i=1,2,5}.
(39

The second term in equation (38) is obtained as ¢ from solving
the following problem:
minimize ¢
w,0,t

subject to g3 (w,d; w",6%) <,
§4 (W7 (Sa ka 5k) <t
(w,0) € W,t>0. (40)

Problems (36) and (40) are both convex QCQP problems and
can be efficiently solved by the corresponding solvers. We call
it the Q-MVSKT algorithm and give the complete description
in Algorithm 5.

VII. COMPLEXITY AND CONVERGENCE ANALYSIS
A. Complexity Analysis

First of all, it should be noted that the memory complexity for
solving the high-order portfolio optimization problem is O(N*)
as the kurtosis matrix W is of dimension N x N3. For example,
when N = 200, storing a complete ¥ takes almost 12 GB
of memory. Thus it is impractical to solve a very large-scale
high-order portfolio optimization problem due to the memory
restriction. All the algorithms investigated or proposed in this
paper are iterative methods. Therefore, we discuss the computa-
tional complexity of constructing the surrogate problems in each

iteration, while the computational complexity of solving them
depends on the specific solvers.

1) On Solving the MVSK Portfolio Problem (10): For Al-
gorithms 1 and 2, the per-iteration computational cost of con-
structing the surrogate problems comes mainly from comput-
ing the gradients, which is O(N*). For Algorithm 3, it is
mainly from computing the gradient V f,.,x(w") and Hessian
V2 foevx (WF), which in principle are O(N*) and O(N°?), re-
spectively. However, we can simplify the computation by first
computing V2 frew (WF) = —A\3V2¢3(WF) + Ay V2 (wF) as

V23 (w) = 6@ (I w) =6 [@Uw qﬂN)w}, (41)

Vs (w) =120 (I wew)
—12 [\Il(l) wow) - W) (we W)] , (42)

where ®(%) is the i-th block matrix of dimension N x N in &
and ¥ is the i-th block matrix of dimension N x N2 in ®.
Then the computational complexity of computing V2 fyeyx (WF)
is reduced to O(NN'*). With the usage of Corollary 2, V feyx (W")
can be easily computed as

7% £V2¢)4 (Wk) Wk.

Vngg (Wk) wh + 3
(43)

vfncvx (Wk) =

Then the overall computational complexity of ¥ fncvx(wk) and
V2 freve (WF) is still O(N*). Therefore, the per-iteration com-
putational cost of constructing the surrogate problems for Algo-
rithms 1, 2, and 3 are O(N4).

2) On Solving the MVSK Tilting Portfolio Problem (11): The
per-iteration computational cost of constructing the surrogate
problems in Algorithm 4 comes mainly from computing the
gradients, while that in Algorithm 5 from computing both the
gradients and Hessian. Similar to the above analysis, the latter
can be simplified so that both algorithms admit the O(N*) com-
plexity on constructing the surrogate problems at each iteration.

B. Convergence Analysis

The convergence properties for the proposed algorithms are
given in the following.

Proposition 6: Every limit point of the solution sequence
{w*} generated by the Algorithm 2 is a stationary point of
problem (10).

Proof: Note that: 1) f(w, w") is continuous in both w and
w"; 2) f(w,w") is a global upper bound function for f(w)
and is tangent to it at w". Thus, [23, Assumption 1] is satis-
fied, and the proof of Proposition 6 follows directly from [23,
Theorem 1]. [ |

Proposition 7: Suppose v* € (0,1], v* — 0 and Y, 7% =
+00, and let {w*} be the sequence generated by Algorithm
3. Then either Algorithm 3 converges in a finite number of
iterations to a stationary point of (10) or every limit of {w*}
(at least one such point exists) is a stationary point of (10).

Proof: Note that the surrogate problem in Algorithm 3 only
approximates the objective of problem (10) with a quadratic one
but leave the constraints untouched, and: 1) VV is a compact and
convex set; 2) f(w) is continuously differentiable and coercive
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on W; 3) Vfy is Lipschitz continuous on W (provided by
Lemma4). Thus, [20, Assumptions A1-A4] are satisfied, and the
proof of Proposition 7 follows directly from [20, Theorem 3].H

Proposition 8: Suppose v* € (0,1], ¥ — 0 and Y, 7% =
+00, and let {w*} be the sequence generated by Algorithm 4
or Algorithm 5. Then {w"} is a generalized stationary point of
the problem (27).

Proof: The only difference between Algorithm 4 and Algo-
rithm 5 is that Algorithm 5 constructs the quadratic approxima-
tion for the non-convex constraints while Algorithm 4 simply
linearizes all the constraints. However, it does not affect the
convergence checking as they are both convex approximation for
the constraints. Besides, it is easy to check that all the conditions
in Assumption 1 are satisfied in both algorithms. Then the proof
of Proposition 8 follows directly from [19]. |

VIII. SOLVING OTHER HIGH-ORDER PORTFOLIO PROBLEMS

The algorithm framework proposed in this paper can be easily
employed to solve other high-order portfolio problems.

A. MVSK Tilting Portfolio With General
Deterioration Measures

As in [12], the MVSK tilting portfolio problem with general
deterioration constraint is given as follows:

minimize  —§

w,0
subject to  gget (W) < K,
9i(W,0) <0, i=1,....4,

weW,d>0, (44)

where gge(W) is an assigned deterioration measure function
and ~ determines the maximum deterioration. As an example,
gdet(W) may be chosen as the deterioration of current w from
an ideal risk parity portfolio, i.e., the risk concentration [27]:

o= 3= (1)’

i=1

(45)

The regularized MVSK tilting portfolio problem is obtained by
transforming the general deterioration constraint of problem (44)
to a regularization term in the objective:

minimize  — ¢ + Agget (W)
w,0
subject to ¢g; (w,0) <0, i=1,...,4,
weW, s> 0. (46)

Obviously, problems (44) and (46) are both solvable via the pro-
posed algorithm framework in Section VI. The only difference
is that here we also need to construct the convex approximating
function for g.r(w) if it is non-convex. The procedure is trivial
and hence omitted.
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B. General Minkovski Distance MVST Portfolio

The general Minkovski distance MVST portfolio [28] admits
the formulation
p> 1/p

subjectto y; (w,d) <0,i=1,...,4,

dy,
Zk

minimize

w7

2(d) = (f:

k=1

wew,d>0, (47)
where zy; is the aspired levels for k-th moments and
y1 (w,d) = —¢1 (W) —dy + 21,
Y2 (w,d) = ¢ (W) — da — 22,
ys (w,d) = —¢3 (W) — ds + 23,
ys (w,d) = ¢s (W) —dy — 2a. (48)

Itis easy to write a sequence of convex approximating surrogate
problem as

minimize

w,d

va(dh)7(d - d) + 3 d - a3
Tw
+ 3w - wh3

subjectto §; (w,d;w", d") < n(wh,d*),i=1,...,4,
weWw.d>0,

where §;(w,d; w*,d*) is the convex approximation of
y;(w,d) at (w”, d*), which can be easily constructed following
similar procedures as in Section VI.

C. Polynomial Goal Programming MVST Portfolio

The polynomial goal programming (PGP) model for solving
the high-order portfolio [29], [30] is a variation of the general
Minkovski distance MVST portfolio taking investors’ relative
preference into consideration. It is formulated as

A1 AQ A3 )\4
minimize z(d) = 4 a2 + ds + da
w,d Z1 Z2 z3 Z4
subject to y; (w,d) <0,i=1,...,4,
weWw.,d>0. (49)

This problem can still be easily handled via a similar procedure
to solving the general Minkovski distance MVST portfolio.

IX. NUMERICAL EXPERIMENTS

In this section, we perform the numerical experiments on our
proposed algorithms.! The data is obtained according to the
following steps:

1) randomly select N stocks from a dataset of 500 stocks,

each of them listed in the S&P 500 Index components;

'We have released an R package highOrderPortfolios implementing our
proposed algorithms at https://github.com/dppalomar/highOrderPortfolios.
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2) randomly pick 5 N continuous trading days from 2004-
01-01 to 2018-12-31;
3) compute four sample moments of the selected N stocks
during the picked trading period.
The starting point is selected as w’ = %1 for all methods.
Without loss of generality, we simply set L = 1 (no leverage),
0= %, and choose the diminishing step size sequence as:

=1, A =" (1-107%). (50)

The inner solvers for QP, LP, and QCQP are selected as
quadprog [31], IpSolveAPI [32], and ECOS [33], [34], re-
spectively. The algorithm is regarded as converged when any of
the following conditions is satisfied:

|xF+1 —x¥| <107 (|Xk+1| + |xk\) ,

[F) = FB) <1070 (IF M+ £ M) -

A. On the MVSK Portfolio Problem (10)

We first set N = 100 and then solve the problem (10) using
benchmark DC-based Algorithm 1, our proposed MM-based
Algorithm 2, and our proposed Q-MVSK Algorithm 3. The
weights for the four moments are decided according to the fourth
order expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

(51

Al = 17 )\2

£E+1) E+1D(E+2)

6 24 ’
where £ > 0 is the risk aversion parameter [9] and set to be 10 in
our experiments. For comparison, we also solve the problem via
the following benchmark methods:

1) differential evolution (DE): similar to [9], we can solve
the high-order portfolio using differential evolution via R
package DEoptim [35];

2) genetic algorithm (GA): similar to [10], we can solve
the high-order portfolio using genetic algorithms via R
package GA [36];

3) NLopt: a optimization tool box for nonlinear optimization.
We use it via the R package nloptr [37] with gradients
passed.

The DC-SOS method is excluded here since its initialization
and solution take much more time than all methods.?> We use the
same randomly generated starting population of size 100 for DE
and GA methods. Besides, we allow the DE and GA methods to
run in parallel, i.e., making full use of all 6 cores of our laptop.
While other methods are run on a single core. In Fig. 4, we
compare the convergence of these algorithms. Significantly, the
Q-MVSK algorithm can converge to the best result in very few
iterations, which is much more efficient than the solver nloptr.
Even with parallel mode, the two metaheuristic optimization
tools, e.g., DE and GA, do not perform well in this problem.

_ ¢
-¢
¢

A3 = A4 (52)

2We acknowledge the author of [16] for sharing their code, which are
publicly accessible at https://github.com/niuyishuai/MVSKOPT, https://github.
com/niuyishuai/DCAM, and https://github.com/niuyishuai/Polylab.

Objective
-0.00150 -0.00125 -0.00100 -0.00075

M

107 :
N |
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> 10 > DE :
) = GA :
% ~ DC :
RPN W MM (prop.) B IS S
-~ Q-MVSK (prop.) '
-®- nloptr '
10710-
10~ 10° 10’ 102
CPU time (seconds)
Fig.4. Convergence of algorithms on solving MVSK problem (10) with N =
100.
10° + -
E nloptr $ ==
10 E3 Q-MVSK (prop.) =
— H
g T 1 1
8 = L s
& L0 U
~ 10 % rl—, (]
[}
2 A R
5 °
5 7.,
107- * .
107- %
40 60 80 100 120 140 160 180 200

N

Fig. 5. Time usage of algorithms on solving MVSK problem (10).
It can be easily explained as both of them involve frequently
computing the objective value, which is very expensive in this
case. The DC-based and MM-based algorithms are both slower
than the general solver nloptr. It implies that they may use very
loose upper bounds. The MM-based algorithm, though much
faster than the DC-based algorithm, is far from being comparable
with the Q-MVSK algorithm.

In Fig. 5, we show the comparison of time consumption of
the proposed Q-MVSK algorithm and nloptr while changing
the problem dimension N. The DC-based and the MM-based

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 07,2021 at 01:41:49 UTC from IEEE Xplore. Restrictions apply.


https://github.com/niuyishuai/MVSKOPT
https://github.com/niuyishuai/DCAM
https://github.com/niuyishuai/Polylab

902
-------------------- G r—- ~
0.3- E
o i
= 0
5 0.2- 0
Q |
o) I
(@] <7 L-MVSKT (prop.) - 7 = 40, 75 = 6 0
-= L-MVSKT (prop.) - 7w = 20, 75 =6 i
0.1- L-MVSKT (prop.) = 7w = 10, 76 = 6 i
4 Q-MVSKT (prop.) - 7w = 75 = 1072 !
-@ nloptr !
0.0- '
107" 107%° 10° 10%°
CPU time (seconds)
Fig. 6. Convergence of proposed algorithms for MVSK tilting problem (11)

with N = 100 and x = 0.34/¢2(wo).

algorithms are not included as they are too slow to be compared
with the proposed Q-MVSK algorithm and nloptr. For fair
comparison, we force nloptr to run until it reaches the objective
obtained from Q-MVSK algorithm. The result is obtained by
performing the experiments on 100 realizations of randomly
generated data. We can see that our proposed Q-MVSK algo-
rithm is consistently more than one order of magnitude faster
than nloptr.

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then solve the
problem (11) via the proposed Algorithms 4 and 5, respectively.
The reference portfolio is simply chosen as the equally weighted
portfolio, i.e.,

1
Wo = Nl.

The tilting direction d is decided as d; = |¢;(w)|. We choose
kin (11) as K = ¢ X \/d2(wq) with ¢ > 0. The general solver
nloptr is also included for comparison.?> We find that, although
the final convergence is guaranteed, the fast convergence of the
proposed L-MVSKT algorithm really relies on the proper choice
of 7y and 75, while that of our proposed Q-MVSKT is much ro-
bust. For example, in Fig. 6, we set k = 0.3/ ¢2(wq) and show
the convergence of the proposed algorithms. It is significant
that the Q-MVSKT algorithm converges in few iterations sim-
ply with 7, = 75 = 107°. The L-MVSKT algorithm can also
converge with comparable speed when parameters are properly
tuned. It may be explained as that the L-MVSKT algorithm
poorly approximates all constraints by linear functions, making
the solution to approximating problems easily violate the orig-
inal constraints. However, the Q-MVSKT algorithm preserves
the convex constraints and approximates the non-convex con-
straints by convex quadratic functions, which turns out to work
very well. Besides, we notice that solving the QCQP problem
is significantly slower than solving the QP problem of the same
size. In Fig. 7, we show the final results of these algorithms when

(53)

3We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.
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Fig. 8. Time usage of algorithms on solving problem (11).

changing the maximum tracking error constraint. It is clear that
all algorithms can give the same results, which are nondecreas-
ing when k increases. In Fig. 8, we show the comparison of
time consumption of the proposed Q-MVSKT algorithm and
nloptr while changing the problem dimension /N. The proposed
L-MVSKT algorithm is not included as its convergence speed
relies heavily on parameter tuning. The result is obtained by
performing the experiments on 100 realizations of randomly
generated data. It is significant that our proposed Q-MVSKT
algorithm is consistently around one order of magnitude faster
than nloptr.

X. CONCLUSION

In this paper, we have considered the high-order moments
of the portfolio return for high-order portfolio optimization.
We have proposed an efficient algorithm framework for solving
high-order portfolio optimization problems based on the succes-
sive convex approximation framework. In particular, we have
proposed efficient algorithms for solving the mean-variance-
skewness-kurtosis portfolio optimization problem and the mean-
variance-skewness-kurtosis tilting portfolio optimization prob-
lem. Theoretically, all the proposed algorithms enjoy conver-
gence to a stationary point. Extensive numerical experiments
show that our proposed algorithms, specifically the Q-MVSK
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and Q-MVSKT algorithms, are much more efficient than the

existing methods and simply using a general solver.

APPENDIX
A. Proof for Lemma 1

According to the Leibniz integral rule [38], we have

OE [wTrrTerw}

ow
0 (WTf‘WTf‘f'TW)

ow

=E

=EBr (" @) (wow)]
=3B [r (7 0 17)] (w o w)
=3P (wew),

OE [w T ererw}

ow

0 (wTrrTererW)

ow

V¢4 (W) =

=E

=E [4r ("
=4E[f(i" o )] (wowaw)
=4¥ (WRWQRW),

O%E [w

" @) (wowew)]

TI'I'TWI'TW]

owowT

0?2 (WTf‘WTf‘f‘TW)

owowT

Vs (w) =

=E

=E[6r (i @) (Iow)]
R [F (7 0 )] (Tow)
=6P (I w),

OE [wltrTwiTwilw
owowT

TTTT]

V2¢4 (W) =
0? (WTrrTererW)

=E owowT

=E[12F (T @i of") Iowo w)]
=12B[f (et o1")] Iowew)
=R2F(Iowew).

B. Proof for Lemma 4

According to the Gershgorin circle theorem [39], we have

P (v2fncvx (W))
<V faew (W) [loc
< A3l 7%03 (W) [loc + Aal| V20 (W) -

(58)

(54)

(55)

903

Under the constraints in (9), we can get

19263 (W) [l

— g 1> 0w

j=1 k=1

N
max E
1<i<N

N

|

k
15 ||

< 6 max
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(59)
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Therefore, we have

(56)

[1]

(2]
7

[3]

[4]
[5]
[6]
[7]

N
(Vanch (W)) < 6)‘3L ma)](\[

J=1

max |<I>(k)|
1<k<N

N

k1)
+1204L? max max |\I!( |
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=

(61)
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