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A B S T R A C T

We study the transmit waveform optimization problem in multiple-input-multiple-output (MIMO) dual-function
radar-communication (DFRC) systems. A penalty-based formulation is adopted where engineering concerns on
radar and communication are integrated in a weighted manner. We transform the original problem into an
unconstrained formulation and propose a novel waveform synthesis algorithm via combination of multiple
algorithm updates. The combination operation experimentally reaches a better objective value than without.
We develop two combination strategies and invent a shrinkage-expansion line search method for monotonicity
maintenance. Numerical experiments show that the proposed algorithm suffices to generate constant modulus
waveforms which achieve radar and communication purposes.
1. Introduction

Nowadays, with the severe challenge of radio-frequency (RF) spec-
trum congestion, the DFRC design scheme has been gaining increasing
popularity. DFRC systems have a vast array of applications ranging
from civilian ones, such as radar and wireless systems [1], autonomous
vehicle network [2], and indoor localization [3], to military ones,
like multi-function RF systems [4], unmanned aerial vehicle (UAV)
communication and sensing [5], and radar-assisted low-probability-of-
intercept (LPI) communication [6]. DFRC systems integrate radar and
communication functions into the same device [7] and are internally
coordinative: the bandwidth, power, and antenna resources are shared
and properly scheduled between radar functions and communication
services [8,9]. Meanwhile, the hardware cost and weight can be re-
duced [10]. Early DFRC systems [11,12] were confined to a single
antenna, but modern systems are designed in a MIMO fashion in
exploitation of higher degrees of spatial freedom, in which case radar
target tracking and wireless communication services can be supported
instantly and simultaneously despite scattered locations of objects and
users [8,13,14].

Liu et al. [8] have categorized the studies of MIMO DFRC systems
into two philosophies: information embedding and transmit beamform-
ing. The information embedding philosophy [15–21] suggests encoding
communication data streams into radar waveforms by manipulating
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waveform parameters. This philosophy is radar-centric and ensures the
primary status of the radar system, but limits the data transmission
rate at a low level. The encoding process is traditionally formulated
as a beampattern matching problem subject to a number of communi-
cation constraints. In latest studies, Wen et al. work on the minimum
signal-to-interference-plus-noise ratio (SINR) maximization problem for
target detection and investigate multi-objective optimization on inte-
grated mainlobe-to-sidelobe ratio (IMSR) and waveform similarity [20,
21]. In contrast, the transmit beamforming philosophy [22–26] is
communication-centric and regards radar sensing as a secondary func-
tion. It supports a higher transmission rate, but poses a challenge
in waveform synthesis which is expected to meet the functional re-
quirements of radar and communication systems as well as mitigate
their mutual interference. In this paper, we treat radar as the primary
infrastructure and focus our research on the information embedding
philosophy in what follows.

1.1. Related works

MIMO Radar and DFRC System. The MIMO radar technology
is widely acknowledged due to its improved capabilities in adaptive
localization and detection compared with a traditional phased-array
radar [27]. This technology can be applied to strengthen or weaken
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the spatial power transmitted towards a range of locations and the
power levels collected from all directions form a spatial beampat-
tern. An important branch of the MIMO radar technology is the slow-
time frequency-diverse array (FDA)-MIMO technique, which can be
applied to the space–time adaptive processing (STAP) radar [28]. There
are several practical concerns to be considered in the MIMO radar
system. Previous works [27,29,30] considered the classical beampat-
tern matching problem, whose objective is to minimize the Euclidean
distance between the designed and desired beampatterns as well as
the cross-correlation between user-specified directions. The pioneer
work [27] only optimized the waveform covariance matrix while the
later works [29,30] optimized the transmit waveforms directly with
an additional constant modulus constraint. This constraint avoids non-
linear distortion of power amplifiers so that the system energy is
fully utilized [30,31]. The classical transmit waveform design prob-
lem contains three concerns: beampattern matching, cross-correlation
suppression, and constant modulus.

In DFRC systems, the requirements of beampattern matching and
constant modulus are reserved and communication symbols are en-
coded on the power levels of some specified communication direc-
tions. This system is radar-centric and the communication service is
only intended for sending short but secured instructional messages. In
the existing the literature, [15,16] took ASK-based DFRC approaches
where power amplitude is utilized for communication services. In
contrast, [17–19] additionally exploited phasic freedom and adopted
a quadrature-amplitude-modulation (QAM)-based scheme. For simplic-
ity, we only consider the ASK-based DFRC techniques and control the
power levels in the communication directions. Wherever the communi-
cation service is active, the power level in that direction is designated to
some prescribed value in the codebook [15,16]. To summarize, radar-
centric MIMO DFRC systems need to consider beampattern matching,
constant modulus, and communication power level fitting.

Algorithmic Scheme. Back in 2007, Stoica et al. [27] formulated
the beampattern matching problem as a SemiDefinite Programming
(SDP) and the solution algorithm requested an off-the-shelf solver like
SeDuMi [32]. When the constant modulus constraint is imposed, Wang
et al. [29] reformulated the original problem into an unconstrained
one by treating phase angles as optimization variables and solved
the unconstrained problem with a limited memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS)-based algorithm; Cheng et al. [30] applied
the Alternating Direction Method of Multipliers (ADMM) framework
and solved the problem in an iterative primal–dual manner; earlier
works [33,34] proposed a series of Majorization-Minimization (MM)-
based algorithms and achieved monotonic objective decrease. How-
ever, the LBFGS-based algorithm can hardly be extended to constrained
optimization problems and the numerical performance is not stable
enough for nonconvex problems. As for ADMM, the convergence cri-
teria are quite restrictive for general nonconvex problems [35,36]
and only empirical convergence is guaranteed in spite of reasonable
initialization and proper choice of penalty factors in the augmented
Lagrangian. The convergence speed of the MM-based algorithms is not
satisfactory without an acceleration scheme, due to the conservative
step sizes derived from the inverse of matrix spectral norm. Moreover,
the obtained descent directions coincide with gradient on many occa-
sions [33]. Liu et al. [22] studied the classical MIMO radar beampattern
matching problem as well as the beamforming strategies for separated
and shared deployment. The classical problem was handled in the same
way as [27]. The problem for separated deployment was solved via
the semidefinite relaxation (SDR) technique while the one for shared
deployment was transformed into a penalty formulation and tackled
with Riemannian manifold optimization.

In radar-centric MIMO DFRC systems, the beampattern design prob-
lems [15–19] are mostly convex and solved with an off-the-shelf opti-
mization toolbox like CVX, but fail to consider the constant modulus
property in the waveform. In our paper, we intend to model the con-

cerns of beampattern matching and communication power level fitting p

2 
as two objective functions and integrate them in a weighted manner.
The constant modulus property is treated as a constraint. Hence, the op-
timization problem to be studied is a penalty-based formulation. If the
penalty-based formulation can be recast as an equivalent unconstrained
problem, many advanced algorithmic frameworks are readily applica-
ble, such as [37–39].1 For nonconvex problems with numerous saddle
points, applying a single algorithmic framework (like gradient descent)
does not necessarily bring us satisfactory optimization outputs [41,42],
so a desirable solution would be combining multiple potential descent
directions in an effort to avoid saddle points [43–46]. Keskar and
Socher [43] developed a feasible combination method which switches
from algorithm Adam [38] to gradient descent. This method is by
essence a violent one-shot move upon meeting the switching criterion.
So far, it remains an open problem how to decently combine multiple
algorithmic frameworks and relevant literature is still scarce.

1.2. Contribution

The major contributions of this paper are listed as follows:
(1) We transform the constrained optimization problem into an

unconstrained one after a change of variable. We propose a novel
shrinkage-expansion line search method to maintain objective mono-
tonicity over iterations. The proposed line search method allows a cus-
tomized initial step and adopts a step size expansion scheme. It enables
a larger step size than initialized and helps promote computational
efficiency.

(2) We develop a novel and provably convergent algorithm to solve
the reformulated unconstrained problem, which combines two descent
directions provided by gradient and Amsgrad [39]. The proposed al-
gorithm experimentally achieves a better objective value than simply
applying gradient or Amsgrad.

(3) We put forward two combination strategies: binary and prob-
abilistic combination. The binary combination strategy maintains the
monotonicity property in objective and attains stationarity conver-
gence. The probabilistic combination strategy empirically reaches an
even lower converged objective than binary combination and a conver-
gence rate of 

(

log 𝑇
√

𝑇

)

(𝑇 is the number of iterations) can be verified
under certain assumptions. Numerical simulations show that the pro-
posed algorithm is able to synthesize constant modulus waveforms
satisfying radar and communication demands.

1.3. Notation

The following notation is adopted. Boldface upper-case letters repre-
sent matrices, boldface lower-case letters denote column vectors, and
standard lower-case or upper-case letters stand for scalars. R (C) de-
notes the real (complex) field. exp (⋅) stands for the natural exponential
function. |⋅| denotes the absolute value for the real case and modulus
for the complex case. Re [⋅] denotes the real part of a complex number.
sgn (𝑥) = 1 if 𝑥 > 0; sgn (𝑥) = 0 if 𝑥 = 0; sgn (𝑥) = −1 if 𝑥 < 0.
{𝑥 ∈ } = 1 if 𝑥 ∈  ; 1 {𝑥 ∈ } = 0 if 𝑥 ∉  . ‖⋅‖𝑝 denotes the 𝓁𝑝-
orm of a vector. ∇ (⋅) represents the gradient of a multivariate function
the way to derive the complex-valued gradient follows Euclidean
radient in [47]). ⊙ stands for the Hadamard product. 𝐗𝑇 , 𝐗∗, 𝐗𝐻 ,

Tr (𝐗), and vec (𝐗) denote the transpose, complex conjugate, conjugate
ranspose, trace, and stacking vectorization of 𝐗, respectively. ‖𝐗‖𝐹 is

the Frobenius norm of 𝐗. ⟨𝐗,𝐘⟩ stands for the inner product of 𝐗 and
𝐘, which is equivalent to Tr

(

𝐗𝑇𝐘
)

for the real case and Re
[

Tr
(

𝐗𝐻𝐘
)]

for the complex case. The superscript ⋆ represents the optimal solution
of some optimization problem. Whenever arithmetic operators (

√

⋅, ⋅∕⋅,
2, |⋅|, max, etc.) are applied to vectors or matrices, they are performed
lementwisely.

1 Nesterov’s fast gradient method [40] is restricted to convex programming
roblems.
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2. Problem statement

We consider a MIMO DFRC system with 𝑀 transmit antennas. Each
ntenna emits a discrete-time complex-number waveform 𝑥𝑚 (𝑛) with
= 1, 2,… ,𝑀 and 𝑛 = 1, 2,… , 𝑁 (𝑁 is the temporal length of the

probing signal). We compactly stack all 𝑥𝑚 (𝑛)’s into a space–time wave-
form matrix 𝐗 ∈ C𝑀×𝑁 with 𝐗𝑚𝑛 = 𝑥𝑚 (𝑛). The transmit steering vector
is expressed as 𝐚 (𝜃) =

[

1, exp (𝑗𝜋 sin 𝜃) ,… , exp (𝑗𝜋 (𝑀 − 1) sin 𝜃)
]𝑇 with

𝜃 being the detection angle, under the assumption of half-wavelength
spacing [27,29]. To perform waveform design, we integrate the con-
cerns of beampattern matching, communication power level fitting, and
constant modulus. The former two are modeled as loss functions and
the last one is imposed as a constraint. Mathematically, we present the
problem formulation as

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
𝑞,𝐗

𝑓BM (𝑞,𝐗) + 𝜏𝑓CP (𝐗)

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 |

|

𝐗𝑚𝑛
|

|

= 1
√

𝑀𝑁
, ∀𝑚, 𝑛.

(1)

here 𝑓BM (𝑞,𝐗) is the beampattern matching loss, expressed as

BM (𝑞,𝐗) = 1
𝐼

𝐼
∑

𝑖=1

(

𝑞𝑃𝑑
(

𝜃𝑖
)

− ‖

‖

‖

𝐚𝐻
(

𝜃𝑖
)

𝐗‖‖
‖

2

2

)2
, (2)

𝑓CP (𝐗) is the communication power level fitting loss, expressed as

𝑓CP (𝐗) =
1
𝐿

𝐿
∑

𝑙=1

(

log
(

‖

‖

‖

𝐚𝐻
(

𝜃𝑙
)

𝐗‖‖
‖

2

2

)

− log
(

𝛥𝑙
)

)2
, (3)

nd 𝜏 > 0 is the integration parameter. Relevant notational and
odeling explanations are elaborated below. 𝑃𝑑

(

𝜃𝑖
)

is the desired
inary or normalized beampattern at 𝜃𝑖, 𝑞 represents the actual am-
litude of 𝑃𝑑

(

𝜃𝑖
)

’s, the set 𝛩𝐼 =
{

𝜃𝑖
}𝐼
𝑖=1 contains all the fine-grid

ngular directions of interest. The communication symbols are mod-
lated into the ASK scheme. The set 𝛩𝐿 =

{

𝜃𝑙
}𝐿
𝑙=1 ⊂ 𝛩𝐼 consists

f all the communication directions and the communication power
t 𝜃𝑙 is ‖

‖

‖

𝐚𝐻
(

𝜃𝑙
)

𝐗‖‖
‖

2

2
. 𝛥𝑙 is the predetermined communication power

evel at 𝜃𝑙 and is selected from the power level set
{

𝛥High, 𝛥Low
}

with
High > 𝛥Low. In engineering practice, 𝛥𝑙 ’s are very closed to zero and
linear fitting may fail due to limited numerical precision. Thus, we

it ‖

‖

‖

𝐚𝐻
(

𝜃𝑙
)

𝐗‖‖
‖

2

2
to 𝛥𝑙 on a logarithmic scale. The waveform matrix 𝐗

as a unit power budget and is elementwisely constant modulus due to
ower and hardware concerns [48]. Due to the primary status of radar
nfrastructure, the communication concern should be down-weighted,
o the choice of 𝜏 actually lies within (0, 1]. The DFRC scheme is
chieved by weighted-sum minimization of the beampattern matching
oss and the communication power level fitting loss.

. Multiobjective beampattern matching design

.1. Reformulation to an unconstrained problem

To solve problem (1), we first minimize the objective with respect
o 𝑞. For any given 𝐗, the optimal solution to 𝑞 is

⋆ (𝐗) =

∑𝐼
𝑖=1 𝑃𝑑

(

𝜃𝑖
)

‖

‖

‖

𝐚𝐻
(

𝜃𝑖
)

𝐗‖‖
‖

2

2
∑𝐼

𝑖=1 𝑃
2
𝑑
(

𝜃𝑖
)

. (4)

ubstituting 𝑞⋆ (𝐗) into the beampattern matching loss 𝑓BM (𝑞,𝐗), we
btain

BM
(

𝑞⋆ (𝐗) ,𝐗
)

= 1
𝐼

𝐼
∑

𝑖=1

‖

‖

‖

𝐚𝐻
(

𝜃𝑖
)

𝐗‖‖
‖

4

2

−

(

∑𝐼
𝑖=1 𝑃𝑑

(

𝜃𝑖
)

‖

‖

‖

𝐚𝐻
(

𝜃𝑖
)

𝐗‖‖
‖

2

2

)2

∑𝐼 2 ( )
≜ 𝑓BM (𝐗) .

(5)
𝐼 𝑖=1 𝑃𝑑 𝜃𝑖

3 
To handle the constant modulus constraint, we consider a variable
transform on 𝐗: 𝐗 = 1

√

𝑀𝑁
𝐘
|𝐘| . This transform removes the constraint

but causes a nonsmoothness issue in
{

𝐘|𝐘𝑚𝑛 = 0,∀𝑚, 𝑛
}

. For the sake
of objective differentiability, we slightly relax the constant modulus
constraint and suggest a smooth surrogate: 𝐗 = 1

√

𝑀𝑁
𝐘

|𝐘|+𝜖 with 𝜖 >
0 being sufficiently small. A similar smooth transform has already
appeared in [38,49], and this smooth transform belongs to a family of
smoothing techniques which are widely acknowledged to be effective
in nonsmooth optimization with convergence guarantee [50,51]. Thus,
problem (1) becomes unconstrained:

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
𝐘

𝑓BM

(

1
√

𝑀𝑁

𝐘
|𝐘| + 𝜖

)

+ 𝜏𝑓CP

(

1
√

𝑀𝑁

𝐘
|𝐘| + 𝜖

)

≜ 𝑓 (𝐘) .

(6)

Problem (6) opens up the possibility for advanced algorithm design
nd integration of multiple frameworks. The most commonly used
ptimization algorithm is gradient descent and the update equation is

𝑡+1 = 𝐘𝑡 − 𝛼𝑡𝐆𝑡, (7)

here the subscripts 𝑡 and 𝑡 + 1 represent numbers of iterations,
𝑡 = ∇𝑓

(

𝐘𝑡
)

, and 𝛼𝑡 is the step size at iteration 𝑡. Reliable numerical
radients are available from the automatic differentiation engines in
achine learning platforms, so we do not have to express 𝐆𝑡 manually.
he gradient descent framework computes the negative gradient as
he descent direction. In the following, we introduce the framework
msgrad which offers a different direction for the descending purpose.

emark 1. In theory, the smooth surrogate is almost equivalent to the
riginal term when 𝜖 → 0. Numerically, the effect of an extra 𝜖 on the
enominator is negligible when 𝜖 is down to 10−8. A constant modulus
ounding could be executed on the converged result in case of a strict
easibility request.

.2. Preliminaries: The Amsgrad framework

The Amsgrad algorithm [39] provides a different descent direction
rom the negative gradient and demonstrates a fast empirical con-
ergence speed in deep learning applications like Computer Vision
nd Natural Language Processing. The Amsgrad algorithm adopts the
oncepts of (1) momentum, which is a weighted moving average of
he current state and the update term, and applied on the first- and
econd-order moments of gradient 𝐆𝑡:

𝑡 = 𝛽1𝐌𝑡−1 +
(

1 − 𝛽1
)

𝐆𝑡 and 𝐕𝑡 = 𝛽2𝐕𝑡−1 +
(

1 − 𝛽2
) (

𝐆∗
𝑡 ⊙𝐆𝑡

)

;

(8)

2) bias correction, which adjusts 𝐌𝑡 and 𝐕𝑡 with a scalar:

̂
𝑡 = 𝐌𝑡∕

(

1 − 𝛽𝑡1
)

and 𝐕̂𝑡 = 𝐕𝑡∕
(

1 − 𝛽𝑡2
)

; (9)

nd (3) per-coordinate adaptation, which elementwisely divides −𝐌̂𝑡

y
√

𝐕̂𝑡 as a potential update direction. Furthermore, Amsgrad incor-
orates a long-term memory for elementwise maximum of all historical
̂
𝑡’s to avoid theoretical divergence. To sum up, the update equations
f Amsgrad are

𝑡 = 𝛽1𝐌𝑡−1 +
(

1 − 𝛽1
)

𝐆𝑡,
̂
𝑡 = 𝐌𝑡∕

(

1 − 𝛽𝑡1
)

;
(10)

𝑡 = 𝛽2𝐕𝑡−1 +
(

1 − 𝛽2
) (

𝐆∗
𝑡 ⊙𝐆𝑡

)

,

̂
𝑡 = max

(

𝐕̂𝑡−1,𝐕𝑡∕
(

1 − 𝛽𝑡2
)

)

;
(11)

𝑡+1 = 𝐘𝑡 − 𝛼𝑡𝐌̂𝑡∕
√

𝐕̂𝑡. (12)

Amsgrad also provides an empirical descent direction −𝐌̂𝑡∕
√

𝐕̂𝑡.
𝐌 , 𝐕 , and 𝐕̂ are initialized with all-zero matrices. The good default
0 0 0
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settings of 𝛼, 𝛽1, and 𝛽2 follow [38, Algorithm 1], which have been
tested on many engineering problems. Both 𝐌𝑡 and 𝐕𝑡 have closed-form
expressions:

𝐌𝑡 =
(

1 − 𝛽1
)

𝑡
∑

𝑠=1
𝛽𝑡−𝑠1 𝐆𝑠 and 𝐕𝑡 =

(

1 − 𝛽2
)

𝑡
∑

𝑠=1
𝛽𝑡−𝑠2

(

𝐆∗
𝑠 ⊙𝐆𝑠

)

.

(13)

3.3. Descent direction combination

Both gradient descent and Amsgrad algorithms can provide descent
directions, given as −𝐆𝑡 and −𝐌̂(𝑡)∕

√

𝐕̂(𝑡), respectively. For simple
notation, we denote them as 𝛥𝐘𝑡,GD and 𝛥𝐘𝑡,Amsgrad. The corresponding
step sizes are denoted as 𝛼𝑡,GD and 𝛼𝑡,Amsgrad. Our proposed algorithmic
scheme is to derive a convex combination of the two directions rescaled
by their step sizes, i.e.,

𝐘𝑡+1 =𝐘𝑡 +𝑤𝑡 ⋅
(

𝛼𝑡,GD𝛥𝐘𝑡,GD
)

+
(

1 −𝑤𝑡
)

⋅
(

𝛼𝑡,Amsgrad𝛥𝐘𝑡,Amsgrad
)

(14)

with 𝑤𝑡 ∈ [0, 1]. We are going to propose two combination strategies
based on this update scheme.

3.3.1. Binary combination strategy
The motivation of binary combination is to select one of the two

descent directions and attain as large an objective decrease as possible.
We propose a shrinkage-expansion line search method to obtain the
step sizes 𝛼𝑡,GD and 𝛼𝑡,Amsgrad. The detailed implementation is elaborated
in Algorithm 1. The intuition of this line search method is that, if the
actual objective decrease 𝐷𝐴 is less than the expected decrease 𝐷𝐸 ,
the step size shrinks iteratively and the output is smaller than the
initial step size 𝛼0; otherwise the step size keeps expanding until the
actual decrease fails to exceed the expected one and the output is larger
than initial. Compared with the traditional Armijo step size rule, the
shrinkage-expansion line search method has the following advantages:
(1) a customized initial step size can reduce the number of attempts
in the while loop; and (2) the expansion mechanism enables a more
aggressive step size than initialized. These advantages are expected to
promote computational efficiency for maintaining monotonicity. Upon
obtaining (𝛼𝑡,GD, 𝐷𝑡,GD) and (𝛼𝑡,Amsgrad, 𝐷𝑡,Amsgrad), we choose the one
that yields a larger decrease as the iteration update, i.e.,

𝑤𝑡 = 1
{

𝐷𝑡,GD ≥ 𝐷𝑡,Amsgrad
}

. (15)

This strategy guarantees monotonic objective decrease.
Algorithm 1 Shrinkage-Expansion Line Search Method.
Require: descent parameter 𝑝des ∈ (0, 0.5), shrinkage parameter 𝑝shk ∈ (0, 1),

expansion parameter 𝑝exp ∈ (1,+∞), initial step size 𝛼0;
1: Set step size 𝛼 = 𝛼0 and

[

𝐷𝐴, 𝐷𝐸
]

=
[

𝑓 (𝐘) − 𝑓 (𝐘 + 𝛼 ⋅ 𝛥𝐘) ,−𝑝des ⋅ 𝛼 ⋅ ⟨𝐆, 𝛥𝐘⟩
]

;
2: signinit = sgn

(

𝐷𝐴 −𝐷𝐸
)

; sign = signinit;
3: 𝑢 = 𝑝shk ×⊮ {sign < 0} + 𝑝exp ×⊮ {sign ≥ 0};
4: while sign = signinit do
5: 𝛼 = 𝑢𝛼;

[

𝐷𝐴, 𝐷𝐸
]

=
[

𝑓 (𝐘) − 𝑓 (𝐘 + 𝛼 ⋅ 𝛥𝐘) ,−𝑝des ⋅ 𝛼 ⋅ ⟨𝐆, 𝛥𝐘⟩
]

;
6: sign = sgn

(

𝐷𝐴 −𝐷𝐸
)

;
7: end while
8: if signinit ≥ 0 then
9: 𝛼 = 𝛼∕𝑢; 𝐷𝐴 = 𝑓 (𝐘) − 𝑓 (𝐘 + 𝛼 ⋅ 𝛥𝐘);

10: end if
11: Obtain step size 𝛼 and actual decrease 𝐷𝐴 as outputs.

3.3.2. Probabilistic combination strategy
Although binary selection of descent directions improves the abrupt

algorithm switch, this strategy discards one descent direction in every
iteration. In order to take full advantage of the two computed direc-
tions, we develop a heuristic but useful combination strategy which
dynamically mixes the two directions with reference to the potential
objective improvements.

(

𝛼 ,𝐷
)

and
(

𝛼 ,𝐷
)

are
𝑡,GD 𝑡,GD 𝑡,Amsgrad 𝑡,Amsgrad t

4 
Table 1
Per-iteration computational cost of the proposed algorithms in different stages.

Descent direction computation Gradient computation,  (𝑀𝑁 (𝐼 + 𝐿))
Elementwise arithmetic operations,  (𝑀𝑁)

Step size derivation Inner product,  (𝑀𝑁)
Objective computation,  (𝑀𝑁 (𝐼 + 𝐿))

Combination weight calculation Scalar calculation,  (1)

Variable update Elementwise arithmetic operations,  (𝑀𝑁)

still obtained from Algorithm 1. The combination weight is obtained
from the softmax operation of the objective decreases, i.e.,

𝑤𝑡 =
exp

(

𝐷𝑡,GD
)

exp
(

𝐷𝑡,GD
)

+ exp
(

𝐷𝑡,Amsgrad
) . (16)

The softmax operation has a probabilistic interpretation in the field of
machine learning and that is what the term ‘‘probabilistic combination’’
is for. The essence of this strategy is that, the larger the objective
decrease, the larger the combination weight that should be assigned in
that particular direction. This strategy does not guarantee monotonicity
but empirically achieves an even lower converged objective than its
binary counterpart. To summarize, the complete algorithm is presented
in Algorithm 2.
Algorithm 2 Descent Direction Combination with Adaptive Step
(DDCAS).
Require: 𝐘1 with initialization, 𝐌0, 𝐕0, and 𝐕̂0 initialized as 𝟎, 𝑡 = 1;
1: repeat
2: 𝛥𝐘𝑡,GD = −𝐆𝑡 where 𝐆𝑡 = ∇𝑓

(

𝐘𝑡
)

;
3: Compute 𝐌̂𝑡 and 𝐕̂𝑡 using (10) and (11), respectively;

4: 𝛥𝐘𝑡,Amsgrad = −𝐌̂𝑡∕
√

𝐕̂𝑡;
5: Compute (𝛼𝑡,GD, 𝐷𝑡,GD) and (𝛼𝑡,Amsgrad, 𝐷𝑡,Amsgrad) with the shrinkage-

expansion line search method (Algorithm 1);

6: 𝑤𝑡 =

⎧

⎪

⎨

⎪

⎩

1
{

𝐷𝑡,GD ≥ 𝐷𝑡,Amsgrad
}

Binary Combination
exp(𝐷𝑡,GD)

exp(𝐷𝑡,GD)+exp(𝐷𝑡,Amsgrad) Probabilistic Combination
;

7: 𝐘𝑡+1 = 𝐘𝑡 +𝑤𝑡 ⋅
(

𝛼𝑡,GD𝛥𝐘𝑡,GD
)

+
(

1 −𝑤𝑡
)

⋅
(

𝛼𝑡,Amsgrad𝛥𝐘𝑡,Amsgrad
)

;
8: 𝑡 = 𝑡 + 1;
9: until convergence

3.4. Computational complexity

Computational complexity analysis is carried out on a per-iteration
basis. Algorithm DDCAS follows a four-stage paradigm: (1) descent
direction computation, (2) step size derivation, (3) combination weight
calculation, and (4) variable update. The detailed computational cost
of the proposed algorithm is listed in Table 1. The processes of gradient
and objective computation can be efficiently implemented in machine
learning platforms, whose complexities are both  (𝑀𝑁 (𝐼 + 𝐿)). The
inner product of gradient and the descent direction costs  (𝑀𝑁) if
proper implementation is carried out: ⟨𝐆, 𝛥𝐘⟩ = Re

[

𝟏𝑇 (𝐆⊙ 𝛥𝐘) 𝟏
]

.
herefore, the per-iteration complexity of Algorithm DDCAS amounts
o  (𝑀𝑁 (𝐼 + 𝐿)).

. Convergence analysis

The convergence analysis of Algorithm DDCAS is given as follows
ith respect to two combination strategies.

.1. Binary combination

heorem 2. The iterates generated by Algorithm DDCAS with the binary
ombination strategy converge to a stationary point of problem (6).

roof. The stationarity convergence is derived from objective mono-

onicity. Please refer to Appendix A in the supplementary document. □
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4.2. Probabilistic combination

The probabilistic combination strategy merely enjoys empirical con-
vergence on general occasions, but a convergence rate of 

(

log 𝑇
√

𝑇

)

can be obtained under the prerequisites of bounded gradients and
objective Lipschitz continuity. The two assumptions are explained in
the following:

• Upper bounded gradient: for any 𝑡 ≥ 1 and any 𝑚, 𝑛, |
|

𝐆𝑡,𝑚𝑛
|

|

≤ 𝐺;
• Lower bounded gradient (the algorithm does not converge at the

initial point): for any element 𝑚, 𝑛, |
|

𝐆1,𝑚𝑛
|

|

≥ 𝑐;
• Lipschitz continuous objective: for any 𝐗1 and 𝐗2, there exists a

constant 𝐿 > 0 that satisfies 𝑓
(

𝐗2
)

≤ 𝑓
(

𝐗1
)

+
⟨

∇𝑓
(

𝐗1
)

,𝐗2 − 𝐗1
⟩

+ 𝐿
2
‖

‖

𝐗2 − 𝐗1
‖

‖

2
𝐹 , or equivalently ‖

‖

‖

∇𝑓
(

𝐗1
)

− ∇𝑓
(

𝐗2
)

‖

‖

‖𝐹
≤ 𝐿

‖

‖

𝐗1 − 𝐗2
‖

‖𝐹 .

The bounded gradient assumption is inherited from [38,52]. Most
bjective functions satisfy Lipschitz continuity, including 𝑓 (𝐘). The
ounded gradient assumption leads to the boundedness of 𝐌𝑡, 𝐌̂𝑡, 𝐕𝑡,
nd 𝐕̂𝑡, as is shown in the following lemma.

emma 3. When gradient elements are upper and lower bounded, the
ounded properties of 𝐌𝑡, 𝐌̂𝑡, 𝐕𝑡, and 𝐕̂𝑡 are given as: for any 𝑡 ≥ 1 and
ny 𝑚, 𝑛,

|

|

𝐌𝑡,𝑚𝑛
|

|

≤ |

|

|

𝐌̂𝑡,𝑚𝑛
|

|

|

≤ 𝐺,

𝑡,𝑚𝑛 ≤ 𝐺2, and
2 ≤ 𝐕̂𝑡,𝑚𝑛 ≤ 𝐺2.

(17)

roof. Please refer to Appendix B in the supplementary document. □

The convergence rate of Algorithm DDCAS under a constant combi-
ation weight is given in Theorem 4.

heorem 4. Under the assumptions of bounded gradients and a Lipschitz
ontinuous objective, when the combination weight remains constant and the
tep size adopts a square-root-decaying fashion (𝛼𝑡 =

𝛼
√

𝑡
for 𝑡 = 1, 2,… , 𝑇 ),

the convergence rate of Algorithm DDCAS is given as

min
𝑡=1,2,…,𝑇

‖

‖

𝐆𝑡
‖

‖

2
𝐹 = 

(

log 𝑇
√

𝑇

)

(18)

egarding problem (6) with 𝜖 → 0.

roof. Please refer to Appendix C in the supplementary document. □

. Numerical simulations

In this section, we present numerical results of multiobjective wave-
orm design. All simulations are performed on a PC with a 2.90 GHz
7-10700 CPU and 16.0 GB RAM.
Default Experiment Settings. We consider a MIMO DFRC system

ith 𝑀 = 32 transmit antennas. The probing signal length 𝑁 equals to
4. The angular range set 𝛩𝐼 is (−90◦, 90◦) with a uniform spacing of
◦. Define 𝛩𝐽 = {−40◦, 0◦, 40◦} and the desired binary beampattern is

𝑑 (𝜃) =

{

1 𝜃 ∈ ∪𝜃𝑗∈𝛩𝐽

[

𝜃𝑗 − 10◦, 𝜃𝑗 + 10◦
]

,

0 otherwise.
(19)

he communication direction set is 𝛩𝐿 = {−80◦, 80◦} and the power
evel set is {−20 dB,−50 dB}. To demonstrate the primary infrastruc-
ure status of radar, we set the tuning parameters 𝜏 to be 0.1. Each
lement of variable 𝐘 is independently initialized with a complex Gaus-
ian distribution  (0, 0.1). The 𝜖 parameter in the smooth surrogate
s fixed as 10−8. In Algorithm 1, parameters 𝑝des, 𝑝shk, 𝑝exp, and 𝛼0 are
et to be 0.3, 0.9, 1.1, and 5×10−3. The aforementioned settings remain
nchanged unless otherwise specified.
5 
Fig. 1. Objective convergence plot: objective versus iteration. Dashed lines represent
the converged objective levels.

5.1. Objective convergence

We include four existing general algorithm frameworks as bench-
marks, namely, LBFGS, SGD, SGD with Nesterov acceleration (SGD-N
in short), and Amsgrad. For further exploration, we incorporate the
proposed line search method into two benchmark algorithms: SGD and
Amsgrad (short for SGD-LS and Amsgrad-LS). The two combination
strategies in the proposed algorithm are investigated separately, so the
proposed algorithm is abbreviated as DDCAS-B (binary combination)
and DDCAS-P (probabilistic combination).

5.1.1. Single realization performance
Objective convergence performances of different algorithms are

presented in Fig. 1. The converged objectives of DDCAS-B and DDCAS-P
are lower than those of benchmarks: in detail, DDCAS-P achieves the
lowest objective upon termination (0.05799) but its convergence trajec-
tory is not monotonic, possibly with a few spikes; DDCAS-B achieves
the second lowest converged objective (0.05841) but the function
values decrease smoothly with iterations. This can be ascribed to the
proposed shrinkage-expansion line search method as well as combina-
tion of two descent directions. The line search method guarantees an
objective decrease and mitigates oscillation in convergence trajectory
(cf. [DDCAS-B, DDCAS-P, SGD-LS, Amsgrad-LS] versus [LBFGS, SGD,
SGD-N, Amsgrad]). With descent direction combination, the update
dynamics may result in a relatively lower converged objective (cf.
[DDCAS-B, DDCAS-P] versus [SGD, SGD-LS, Amsgrad, Amsgrad-LS]).

5.1.2. Multiple realization performance
For performance generalization, we have tested the proposed al-

gorithm and the benchmarks with 100 random initializations and the
reported results are averaged over the 100 instances. In Fig. 2, we
present the converged objectives, complete computational time, and
per-iteration computational time achieved by different algorithms. In
terms of average converged objective (Fig. 2(a)), the proposed DDCAS-
B and DDCAS-P reach the lowest levels of all the compared optimization
algorithms, about one-third of the best benchmark algorithms (Amsgrad
and Amsgrad-LS). In detail, DDCAS-P (0.05793) slightly beats DDCAS-B
(0.06136) by 5.6 percent. This is because the probabilistic combination
strategy takes full advantage of the two computed directions and
dynamically adjusts the combination weight. Empirically, DDCAS-P
obtains an even lower objective value but its convergence trajectory
experiences oscillation, while DDCAS-B reduces the objective step by
step and makes progress in every iteration. As a sacrifice, DDCAS-B and
DDCAS-P take longer computational time than benchmarks. In terms of
complete and per-iteration computational time (Figs. 2(b) and 2(c)),
DDCAS-B and DDCAS-P are among the longest of all. The complete
computational time is approximately 130 s and 220 s, and the per-
iteration computational time is about 0.050 s and 0.052 s. This is
because DDCAS-B and DDCAS-P apply the line search mechanism on
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Fig. 2. Converged objective, complete computational time, and per-iteration computation time of different optimization algorithms, averaged over 100 instances.
d

5

1
t

two descent directions while other benchmarks either skip the line
search step or involve only one descent direction.

To conclude, the above simulations prove the necessity of the
shrinkage-expansion line search method and descent direction combi-
nation. DDCAS-P is recommended when the achieved objective value is
prioritized; DDCAS-B is preferred when progressive objective improve-
ment is required.

5.2. Waveform design

We will show the multiobjective waveform design with the fol-
lowing experiments. Given waveform 𝐗, beampattern at location 𝜃𝑖 is
alculated as

eampattern
(

𝜃𝑖
)

= ‖

‖

‖

𝐚𝐻
(

𝜃𝑖
)

𝐗‖‖
‖

2

2
. (20)

he proposed algorithms are DDCAS-B and DDCAS-P. For comparison,
e consider three benchmarks:

• The first benchmark is the classical two-stage approach, which
solves the modified waveform covariance matrix problem (21)
in the first stage and synthesize the waveform using alternating
minimization [53] afterwards for a constant modulus waveform.

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
𝑞,𝐑

1
𝐼

𝐼
∑

𝑖=1

(

𝑞𝑃𝑑
(

𝜃𝑖
)

− 𝐚𝐻
(

𝜃𝑖
)

𝐑𝐚
(

𝜃𝑖
))2

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝐑𝑚𝑚 = 1
𝑀

, ∀𝑚, 𝐑 ⪰ 𝟎

𝐚𝐻
(

𝜃𝑙
)

𝐑𝐚
(

𝜃𝑙
)

= 𝛥𝑙 , ∀𝑙.

(21)

We model the communication power level fitting concern as a
few linear constraints. This benchmark is shortly written as ‘‘SDP
+ AltMin’’.

• The second benchmark follows the unconstrained reformulation
in [29], which treats phase angles 𝜣 as optimization variables
and solves:

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
𝑞,𝜣

𝑓BM (𝑞,𝐗 (𝜣)) + 𝜏𝑓CP (𝐗 (𝜣)) (22)

with 𝐗 (𝜣) = 1
√

𝑀𝑁
exp (𝑗𝜣). This problem is solved with an

LBFGS-based algorithm in [29], shortly written as ‘‘𝜣-LBFGS’’.
• The third benchmark (state-of-the-art) is inherited from [15–17].

This benchmark must be adapted so as to cater for the waveform
matrix design and constant modulus constraint. After a reason-
able modification, we solve the following minimax optimization
problem:

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
𝑞,𝐑

max
{𝜃𝑖∶𝑃𝑑 (𝜃𝑖)≠0}

|

|

|

𝑞 − 𝐚𝐻
(

𝜃𝑖
)

𝐑𝐚
(

𝜃𝑖
)

|

|

|

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝐚𝐻
(

𝜃𝑖
)

𝐑𝐚
(

𝜃𝑖
)

≤ 𝜀0, ∀𝜃𝑖 ∶ 𝑃𝑑
(

𝜃𝑖
)

= 0

𝐑𝑚𝑚 = 1
𝑀

, ∀𝑚, 𝐑 ⪰ 𝟎

𝐚𝐻
(

𝜃𝑙
)

𝐑𝐚
(

𝜃𝑙
)

= 𝛥𝑙 , ∀𝑙.

(23)

We set 𝜀0 = 0.1. The waveform matrix is generated using al-
ternating minimization [53] afterwards for a constant modulus
6 
waveform. This benchmark is shortly written as ‘‘Minimax +
AltMin’’.

Waveform design performance will be investigated in the following
four scenarios:

• Scenario I (Symmetric beampattern): the target location set is
𝛩𝐽 = {−40◦, 40◦}, the communication direction set is 𝛩𝐿 =
{−80◦, 0◦, 80◦}, and the corresponding power level is

{

−20 dB,
−20 dB,−40 dB

}

.
• Scenario II (Asymmetric beampattern): the target location set

is 𝛩𝐽 = {−30◦, 60◦}, the communication direction set is 𝛩𝐿 =
{−80◦, 10◦, 35◦}, and the corresponding power level is

{

−20 dB,
−40 dB,−40 dB

}

.
• Scenario III (Asymmetric beampattern with close-to-target com-

munication requirements): the target location set is 𝛩𝐽 = {−30◦,
60◦}, the communication direction set is 𝛩𝐿 = {−43◦, 18◦, 76◦},
and the corresponding power level is {−40 dB,−40 dB,−20 dB}.

• Scenario IV (Asymmetric beampattern with Gaussian windows):
𝑃𝑑 (𝜃) takes a Gaussian shape. Other detailed settings follow
Scenario II.

5.2.1. Single realization performance
We present the beampattern comparison results in Fig. 3. Ver-

tical dashed lines show the communication directions and horizon-
tal dashed lines indicate the desired communication power levels. A
‘‘cross’’ marker indicates the power level in the particular direction de-
rived from a certain algorithm. The beampatterns produced by ‘‘SDP +
AltMin’’ and/or ‘‘Minimax + AltMin’’ have the lowest sidelobe levels of
all, but fail to meet the communication power requirements, especially
where the required power level is −40 dB. The mainlobes produced by
‘‘Minimax + AltMin’’ are likely to deteriorate when the ideal beam-
pattern is asymmetric. This is because the waveform synthesis stage
‘‘AltMin’’ wipes out the effects of the communication power constraints
and possibly the beampattern matching objective. The beampatterns
produced by 𝜣-LBFGS satisfy the communication power requirements
in all the four scenarios, but the sidelobe levels are relatively higher
on most occasions. The reason could be that the LBFGS-based algo-
rithm terminates in a plateau region or converges to a low-quality
local minimum. Numerous local minima spread across the domain
due to the periodic property of exp (𝑗𝜣). In contrast, the proposed
algorithms DDCAS-B and DDCAS-P satisfy the beampattern matching
and communication power requirements simultaneously. Note that the
beampatterns produced by DDCAS-B and DDCAS-P mostly overlap each
other with negligible visual differences. Furthermore, it can be shown
that both DDCAS-B and DDCAS-P achieve at least a 12 dB sidelobe
ecay in Scenarios I–IV.

.2.2. Multiple realization performance
For performance generalization, we have tested all algorithms with

00 random initializations and the reported results are averaged over
he 100 instances. The numerical results of the converged objective

and individual losses are displayed in Table 2. The best results are
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Fig. 3. Beampattern comparison of different algorithms under various scenarios.
Table 2
Converged objective and individual losses of different algorithms,
averaged over 100 instances.

(a) Symmetric beampattern.

Algorithm Objective Beampattern
loss

Communica-
tion
loss

SDP + AltMin 0.1900 0.07203 1.180
𝜣-LBFGS 0.09165 0.09163 2.540 × 10−4

Minimax + AltMin 0.5353 0.3846 1.507
DDCAS-B (proposed) 0.07610 0.07610 2.955 × 10−5

DDCAS-P (proposed) 0.07544 0.07544 3.573 × 10−5

(b) Asymmetric beampattern.

Algorithm Objective Beampattern
loss

Communica-
tion
loss

SDP + AltMin 0.3835 0.1168 2.667
𝜣-LBFGS 0.1261 0.1261 1.792 × 10−4

Minimax + AltMin 1.270 0.7544 5.151
DDCAS-B (proposed) 0.1207 0.1207 3.630 × 10−5

DDCAS-P (proposed) 0.1206 0.1206 4.813 × 10−5

(c) Asymmetric beampattern with close-to-target communication
requirements.

Algorithm Objective Beampattern
loss

Communica-
tion
loss

SDP + AltMin 0.2285 0.1196 1.089
𝜣-LBFGS 0.1387 0.1387 1.899 × 10−4

Minimax + AltMin 1.793 1.349 4.438
DDCAS-B (proposed) 0.1244 0.1244 4.078 × 10−6

DDCAS-P (proposed) 0.1240 0.1240 3.880 × 10−6

(d) Asymmetric beampattern with Gaussian windows.

Algorithm Objective Beampattern
loss

Communica-
tion
loss

SDP + AltMin 0.5402 0.02440 5.158
𝜣-LBFGS 0.02426 0.02426 2.992 × 10−5

Minimax + AltMin 0.7032 0.1856 5.176
DDCAS-B (proposed) 0.01895 0.01895 1.714 × 10−5

DDCAS-P (proposed) 0.01884 0.01884 2.079 × 10−5
highlighted in red. The objective computation follows problem (1).
In terms of objective value, DDCAS-P achieves the lowest level in all
the studied scenarios, narrowly beating DDCAS-B. 𝜣-LBFGS ranks third
because it shares almost the same objective as the proposed algorithms
but terminates early in a far-from-optimal region. ‘‘SDP + AltMin’’
and ‘‘Minimax + AltMin’’ rank last due to the two-stage optimization
scheme; the ‘‘AltMin’’ stage kills communication properties and even
causes beampattern mismatch. Next we investigate into individual
losses. When the beampattern loss is concerned, ‘‘SDP + AltMin’’ does
the best job in Scenarios I, II, III, and V while DDCAS-P ranks top in
Scenario IV. The beampattern matching performance of ‘‘Minimax +
AltMin’’ is not so satisfactory. As for the communication losses, DDCAS-
B and DDCAS-P outperform the other algorithms by at least one order of
magnitude on most occasions in Scenarios I - III and their superiority
is still maintained in Scenario IV; ‘‘SDP + AltMin’’ and ‘‘Minimax +

AltMin’’ fail to meet communication requirements.

7 
To illustrate the dual functional capability on the communica-
tion side, we adopt a practical evaluation metric named Mean Rel-
ative Symbol Deviation (MRSD), which is calculated as MRSD =
1
𝐿
∑𝐿

𝑙=1

|

|

|

𝛥design,𝑙−𝛥standard,𝑙
|

|

|

𝛥standard,𝑙
. This metric is driven by the low-power commu-

nication requirement so that the communication signal can be perfectly
hidden in the background. For transmission security, only the symbols
whose power levels are close to standard can be successfully decoded.
Thus, the MRSD metric should be as small as possible. The MRSD
comparison results are presented in Table 3. Under the four studied sce-
narios, the proposed algorithms (either DDCAS-B or DDCAS-P) achieve
the lowest MRSD. The waveforms generated by benchmarks ‘‘SDP +
AltMin’’ and ‘‘Minimax + AltMin’’ cannot realize the communication
purpose due to extremely large MRSD values. Benchmark 𝜣-LBFGS
is slightly inferior to the proposed algorithms on MRSD because of
early termination in a suboptimal region. Quantitatively, DDCAS-B
and DDCAS-P reduce the MRSD value of 𝜣-LBFGS by 51% and 46%,
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Table 3
Communication-oriented metric MRSD comparison under the four studied scenarios,
averaged over 100 instances.

I II III IV

SDP + AltMin 19.94 65.81 12.06 624.4
𝜣-LBFGS 0.02950 0.01533 0.01497 8.451 × 10−3

Minimax + AltMin 35.51 526.8 237.26 527.6
DDCAS-B (proposed) 0.01023 9.128 × 10−3 3.777 × 10−3 6.496 × 10−3

DDCAS-P (proposed) 0.01137 0.01086 3.374 × 10−3 7.172 × 10−3

respectively. Hence, dual functionality on the communication side is
fulfilled.

To conclude, the above simulations have shown that the proposed
algorithms suffice to generate qualified waveforms in different en-
gineering scenarios. If the beampattern shape is the only concern,
either DDCAS-B or DDCAS-P works. When the optimality of objec-
tive or the beampattern loss is prioritized, DDCAS-P is recommended.
When computational efficiency is preferred, one may want to choose
DDCAS-B.

6. Conclusion

In this paper, we have studied the transmit waveform optimization
problem in radar-centric MIMO DFRC systems. We have considered
a penalty-based formulation which addresses the concerns of trans-
mit beampattern matching and communication power level fitting. A
constant modulus constraint has been imposed on the waveform for
hardware concerns. We have rewritten the original problem equiva-
lently into an unconstrained one via a change of variable. Thereafter,
we have proposed a novel and provably convergent algorithm named
DDCAS which combines the descent directions provided by gradient
and Amsgrad. In addition, we have developed the shrinkage-expansion
line search method which allows a customized initial step and enables
a larger step size than initialized, as opposed to the traditional Armijo
step size rule. Algorithm DDCAS contains two weight combination
strategies: binary and probabilistic combination. The binary combina-
tion strategy has shown provable stationarity convergence and mono-
tonic property in objective. The probabilistic combination strategy
has experimentally achieved an even lower converged objective than
its binary counterpart. Furthermore, a convergence rate of 

(

log 𝑇
√

𝑇

)

has been verified under certain assumptions. Numerical simulations
have revealed that algorithm DDCAS manages to synthesize qualified
waveforms which achieve radar and communication purposes. We have
also specified the occasions for which the combination strategies are
well suited.
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