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A Third-Order Majorization Algorithm for Logistic
Regression With Convergence Rate Guarantees

Licheng Zhao"”, Wengiang Pu

Abstract—In this paper, we study the classical Logistic Regres-
sion (LR) problem in machine learning. Traditionally, the solving
algorithms are based on either the first- or second-order approxi-
mation of the objective. For instance, the Fixed-Hessian Newton
(FHN) method approximates the true Hessian with a constant
estimate. In contrast, our design additionally exploits the third-
order information. Applying the majorization—-minimization (MM)
framework, we construct a novel majorizing function based on
the third-order Taylor expansion and the minimization solution
is in closed-form with perseverance of the true gradient and Hes-
sian structures. In analysis, we prove the convergence rate of the
proposed algorithm. The enhanced numerical performance can be
verified through simulation results.

Index  Terms—Convergence rate,
majorization-minimization, third-order.

I. INTRODUCTION

OGISTIC Regression (LR) is a widely-used linear

model for binary classification in the field of machine
learning [1], [2], [3]. Given a feature vector x € RP and a binary
label y € {0,1},! we linearly combine elements of x with a
weight vector w € R? and use the quantity w’x to fit a class
label y. The only parameter in LR is a D-dimensional vector,
so LR is a lightweight model and easy to deploy online [4].
Another advantage in LR is high interpretability. Once the
weight vector w is obtained, for any feature index d, we can

evaluate the ratio |wqxq|/ 25:1 |wqxq| for feature importance.
Due to great convenience in cause tracing, LR plays a crucial
role in impact factor analysis in many fields, like financial
risk management [5], online transaction supervision [6], and
medical disease diagnosis [7].

To illuminate the LR model, we denote the dataset as
{%,Yn }N_; (N > D) and formulate the optimization problem
as

N N N
minLVmize f(w)= Z Jn (W) :Z 9n (XZW> :Z {_y”
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< log (7 (x5 w)) — (1~ y) log (1 — o (xIw))
(1)

where o(x) = 1/(1 + exp(—xz)) € (0,1) is the Sigmoid func-
tion. This formulation is driven by the maximum likelihood
estimation and the objective is known as the cross-entropy loss.
Note that problem (1) is convex and thus its global optimum can
be attained by polynomial-time algorithms. Existing LR solution
methods are twofold: Hessian-based and non-Hessian-based.
Non-Hessian-based methods only exploit the first-order infor-
mation, like gradient descent, conjugate gradient [8], iterative
scaling [9], [10], and dual optimization [11]. Hessian-based
methods further utilize the second-order information, including
Newton’ s method, Quasi-Newton [12], Iteratively Re-weighted
Least Squares (IRLS) [13], and Fixed-Hessian Newton (FHN)
method [14]. As has been revealed in many technical reports,
the introduction of Hessian brings about beneficial outcomes in
numerical performance and the variants of Newton’ s method
beat the vanilla version empirically.

We have also studied a few closely-related algorithmic frame-
works for LR solution. Subspace optimization on general-
ized linear models [15] works well with a superlinear conver-
gence rate. With regard to third-order methods, Nesterov and
Polyak [16] proposed the Cubic-Regularized Newton’ s method
(CRN) which derives a global upper bound via the Hessian Lip-
schitz constant. The Adaptive Regularization algorithm using
Cubics (ARC) framework [17], [18] iteratively constructs a local
cubic overestimator. However, the Hessian Lipschitz constant in
CRN is difficult to calculate on a specific objective and the over-
estimator construction rule of ARC is very intricate and involves
parameter tuning issues. In this paper, we focus on improving
Hessian-based methods with higher-order information. We point
out the weaknesses of FHN from a majorization minimization
(MM) [19] perspective and enhance the performance of LR
solution herein.

The Hessian-based method FHN approximates the iteration-

varying Hessian H with a constant matrix H:

H=XAXT )
L1
and H = ZxxT, 3)

where all x,,’s are horizontally stacked as X € RP*" and A €
RNV s diagonal with A,,,, = o(xLw)(1 — o(x%w)). Since
Appn < 1/4, wenaturally have H < Hand convergence of FHN
is thus guaranteed. Admittedly, Hisa good estimate of H in the
early stage of iteration if w is elementwisely initialized around
zero. However, when w is close to the optimum, A,,, should
approach either O or 1 and H deviates from the true Hessian to
a great extent, leading to slow convergence.
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The main contribution of this paper resides in a more efficient
LR solution. On the algorithmic level, we construct a third-
order global majorizing function and find a closed-form update
preserving the true gradient and Hessian. Compared with the
existing third-order methods, we develop an innovative imple-
mentation via MM and a parameter-free acceleration strategy.
In analysis, we derive an O(1/k?) convergence rate for the
proposed algorithm where k is the iteration count. The superior
numerical performance is illustrated in simulations.

II. THIRD-ORDER MAJORIZATION

In this section, we develop an iterative algorithm for the LR
model. We adopt the MM framework as in [19], [20] and obtain
a closed-form update scheme in every iteration.

A. Majorizing Function Construction

The majorization of f(w) is carried out individually on each

fn(w). The current value of w in iteration k is written as W(k).
Note that f,,(w) = g, (x.w) by definition. We represent x.w
as z, and xgw(k) as z%k), and then majorize g, (z,) at zT(Lk).
The second-order Taylor expansion of g,,(z,,) around 2 ) with
a Lagrange remainder is given as

Gn (2n) = gn( (k )) + g (an))(zn - Zr(Lk))

+ fgii(f(’“))(zn — 22 )

with &(Lk sitting between z() and z,. Since g/ ( (k))
0(57(1}6) )(1 (&(lk))) < 1/4, one reasonable choice of majoriz-

ing function g, (2, ch)) is

Gn (20 287 = g (2) + ¢y (200) (20 — 27)
1
+ §<Z" — 22,

Then we undo z,, and z,(L ) to formally present the majorizing

function f, (w, w*)) :

Fulwr, w®) = u(w®) + (o (xTw®) ~ 9.

1
x xF(w—wk) 4 Z(w —wk)T. [x, x| (w — wk)),

8
Eventually, the majorizing function of f(w), denoted by
f(w,w®), is merely a summation of f,(w,w*)) and
expressed as

N T
Fw, wl) = faw) ¢ (Z (o (<Iw®) =) 'Xn)

n=1
N

>, ] w — w®)
B 5)

We can easily find out that 13" x,x7 = 1XX7 = H,
so the FHN method fits in the MM framework by means of
second-order majorization. To further improve FHN, we need
even higher orders of approximation for greater accuracy.
Hence, we extend the Taylor expansion (4) to the third order:

9n (z0) = 9a (=) + g, (20 (20 — 247

+ 500 (o — ) g€ o

1
x (w— w4 2(W w)T l

»-lkﬂ—‘

(k))
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The third-order derivative is also bounded: g (fy(f))
L

o)L~ o(@)(1 ~20(&) € [-L,I]  and L=
/3/18. Thus, we majorize the third-order term:

We undo z,, and z, ), and separate x,, and w — w*) with a
further majorization using the Cauchy-Schwarz inequality:

I _
= x5 (

6
In the end, we display an improved version of f(w, w(k)) as

L 3
W — W(k)) < 5 ||XnH§ Hw - W(k)Hz'

f(w,w(’“)) — f(w(k)) + [h(k)]T(W _ W(k))

1 L
+ 2(W w(k))TH(k)(W W(k)) + g”W_W(k)H%7 )
where h(*) = ZrILV (o (xIw®)) — ) - x,,, H® follows (2),

and L = L - Z _, |I%n|3. Compared to (5), f(w, w*)) in (7)

is a closer approximation of f(w) in the neighborhood centering
(k)

wih),

B. Minimization Solution Pursuit

Upon obtaining the majorizing function, we conduct the mini-
mization operation at each iteration. Because the LR model is an
unconstrained optimization problem, the minimization solution
w41 must satisfy the zero gradient condition:

W) 4 H® (w1 _ )

L
+ §||W(k+1) _ W(k)||2(w(k+1) _ w(k)) - 0.
Thus,
L —1
Wk ) — (H(k) N Lf;()l) B ()
and
pF) = ||W(k+1) — W(k)\|2~

Taking squared ¢5-norm on both sides of (8), we have an equation
for p(¥):
2

Lp® \ !
(p(*))2 H H<’“>+ '02 I) h(®) )

2
With p(k) >0 and H® > 0, the function of the left-hand
side minus right-hand side monotonically increases in p(*) on
domain (0, [[(H®*))~'h(®)||5) and 0 falls within the function
range. Therefore, equation (9) yields a unique solution and
this solution can be found via bisection search. The solving
procedure involves eigenvalue decomposition of H*): H(*) =
UBAR(UENT AR is diagonal with eigenvalues arranged
in descending order and the right-hand side of (9) becomes
2 D

- = (k)) 2
‘(A(k)_’_LpQ(k)I> 1}~1(k) :Z (hd )

-_—
= (Ag’“) + —L’ijk))
where h(®) = (U®)Th*®) and A =

Agk) . After bisection, we
substitute p(’“) in (8) for w(**1) and this minimization solution
yields a decrease in objective.

Upon implementation, we may want to improve the solv-
ing procedure and decrease the objective further. With a
ht abuse of notation, we denote wF+1) — w(k) _ (H(k) +

Restrictions apply.
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Algorithm 1: Third-Order Majorization Algorithm with line
Search (TOMANS).

Require: Input: X € RP?*Y and y € RV*!, Initialization:
w0, Line search division parameter J = 26, k = 0.

1: repeat
2 bW =3 (o (xEw®) —y) - x5
3: H® = XA®XT with A*) being diagonal and

A CADIC
4: Eigenvalue decomposition: H(*)
with A®) = Diag(A(*));

- U(Xn W(k)))
= UWA®R (UENHT

5: h®) = (UME)Thk),
6: Solve for p(k) € (0, ||(H(Ic )71 ¥)||5) with bisection
k ()
search: (p(*))? Zd ( )2/@; ) +LpT)2;
7o k) — ) G0 6 0 282 )

(elementwise division);
8 &= H®)"Th®|/T; Flag = 0;
9: we =wh —UR (LK) /AK);
10:  while ¢ < ||(H®) Th®)||,do
11: if f(we) < f(wF+1)) then
12: Flag = 1; Break;
13: end if ~
15:  end while
16w+l — {x?v(kJrl) Flag=0

We Flag =1’
17: k=k+1;

18: until convergence

L"TUC)I) ~1h(*) We consider an objective-oriented line search for
a further decrement with respect to f(w(**1)). The potential
update is in the form of w(*) — (H® + ZET)~'h(®) and the
line search is conducted on ¢ within (0, |[(H*))"h(*)|) in a
geometric series. If a further decrement is observed, we set the
potential update as w(#+1); otherwise, set w(*+1) = w(#+1) To
this point, we summarize the proposed algorithm in Algorithm 1,
named TOMAS.

III. CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of the
proposed algorithm TOMAS. Specifically, we study the conver-
gence rate in terms of optimality gap. We assume that the LR
problem is well defined and the sublevel set of f(w) is bounded,
i.e., (w* is the global optimal solution)

lw—w*|l, < S, Vw: f(w)<f (W(O)> . (10)

This assumption holds true for inseparable datasets as well
as separable datasets with (o regularization in f(w). The
convergence rate is summarized in the theorem below.

Theorem 1: Suppose the sublevel set of f(w) is bounded like
(10). The convergence rate of Algorithm 1 in terms of optimality
gap is given by

Fw®) = f (w*

Jsszflwm320<1>,
T 2(k+3v3-1)” K
(1

IEEE SIGNAL PROCESSING LETTERS, VOL. 31, 2024

_ Proof: To start with, we bound the residual of f(w) —
fw, wi), Notice that the complete inequality relation of (6)
LI k I k

is — £z — 2P < FANEN) (20 — 27) < Elam = 2P,
so it holds that

3
00 = Fowvew®] < 5 o = w9
2

As a result,

! (w(k+1)) <f (‘;V(k'+1)) — H‘l"i’nf(w’w(’f))

L 3
<1+ 4w
By the assumption of a bounded sublevel set, we further have
L
f (w<1>) < f(wh)+ 355
According to the MM framework, it is 0bv10us that f(w(*+1) <
f(wk)), Vk. In the following, we link f(w**1)) and f(w(*))
with an inequality chain. Let W(Bk) = pw* + (1 — B)w*) and
B € [0, 1]. It can be established that
(o) <308 £t v
3

2

12)

2 Fw®) — 5 (Fw®) —  (wh) + £°85

where (a) is because f(wgk)) — f(w®) < B(f(w*) —

f(w))) due to convexity of f(w), and |[w* — w5 < S.
Minimizing the right-hand side with respect to 3 € [0, 1], we
obtain

f (W(k+1)) — fw®y < -

with

Fwk)) — f (w*) f(w®) = f(w*)
0<p= \/ 755 S\/ 7E <1

Flwh)) -

W(k) o w* 3/2
§U< ) )T s

LS3

Finally, we derive the convergence rate. Let r; =
f(w*) be the optimality gap, and thus

1 1
Nl N
(a) 2

© 3VLS3 \/TETk11 (\ﬁ-i- ,/Tk+1)

3/2
where (a) is because of (13): ry — 7541 > %\;’“—73

Tk — Tk4+1

VTt (Ve + /o)
3/2 ]

LSs3

Therefore,

1 1 k-1 @
N = NN \/LS3 <f+ )

1 k -
N k+3V3 1, v,
LS3 3
where (a) is due to (12). Substitute v/3/18 - Zn L 1|3 for L,
and we get (11). |

IV. NUMERICAL SIMULATIONS

In this section, we present numerical results on both synthetic
and real-data experiments to illustrate the performance of Al-
gorithm TOMAS. All simulations are performed on a PC with

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 01,2024 at 10:01:16 UTC from IEEE Xplore. Restrictions apply.
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Numerical performance on synthetic datasets.

TABLE 1
NUMERICAL PERFORMANCE ON REAL DATASETS. THE EVALUATION METRICS ARE TRAIN/TEST ACCURACY AND AVERAGE CPU TIME.

Dataset GD NAGD FHN TOMAS
Train/Test accuracy | Time (s) | Train/Test accuracy | Time (s) | Train/Test accuracy | Time (s) | Train/Test accuracy | Time (s)
australian 87.08%/88.10% 0.6117 87.08%1/88.10% 0.1485 87.08%/88.10% 0.0098 87.08%1/88.10% 0.0061
breast-cancer 97.20%/97.27% 0.0534 97.20%/97.27% 0.0109 97.20%/97.27% 0.0152 97.20%/97.27% 0.0059
mushroom 99.95%/99.85% 0.6735 100%/99.85% 0.4211 100%/99.85% 1.7060 100%/99.85% 0.1495
phishing 94.27%193.94% 7.0165 94.27%/93.94% 0.4391 94.27%193.94% 0.7315 94.27%/93.94% 0.1850

a 2.90 GHz i7-10700 CPU and 16.0 GB RAM. The compared
algorithms are listed as follows:

e GD (benchmark): Gradient descent. Complex-
ity:>?O(DN). Backtracking line search [21] is applied to
ensure monotonicity.

e NAGD (benchmark): Nesterov Accelerated Gradient De-
scent [22], [23]. Complexity: O(DN). Line search is
applied for a larger step size rather than monotonicity.

e FHN (benchmark): a second-order method. Complexity:

O(DN + D?). Line search is not applicable.
TOMAS (proposed): a third-order algorithm with line
search. Complexity: O(DN + D?N + D3).

A. Synthetic Experiments

Let D = 1000 and N = 3000. We generate one instance of
X and y: X is drawn columnwisely from a standard Gaussian
distribution N'(0,I) and y elementwisely from a Bernoulli
distribution B(1,0.5). We present the convergence property of
the compared algorithms in Fig. 1. Fig. 1(a) shows the conver-
gence curves of GD, NAGD, FHN, and TOMAS. The horizontal
black dashed line indicates that all three algorithms converge
to the same objective value. This phenomenon matches our
expectation because the LR model produces a convex problem
and all optimization algorithms should reach the same optimal
value. With regard to computational efficiency, we can observe
in Figs. 1(a) and 1(b) that the proposed algorithm TOMAS takes
the fewest iterations and least CPU time upon convergence. In
detail, TOMAS converges within 10 iterations and 0.6 seconds
while FHN, NAGD, and GD take (40 iterations, 1 second), (400
iterations, 1.3 seconds), and (1000 iterations, 4.2 seconds) to
complete the whole process. Note that the empirical convergence
speed could be faster than the worst-case theoretical rate derived
above, cf. Fig. 1(c).

To further compare computational efficiency, we run the
algorithms in different scenarios with multiple realizations. We
vary D in {500, 1000, 1500, ...,3500} and set N = 3D. The
reported performance is averaged over 100 random instances of
X and y. Fig. 1(d) reflects the running time of the compared
algorithms under different choices of feature dimension D.
Obviously, TOMAS is the most efficient across the entire range
of D. Quantitatively, TOMAS shortens the running time of GD,

2Computation complexity is assessed on a per-iteration basis.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen).

NAGD, and FHN by 60%, 55%, and 40% in average. So numer-
ically, TOMAS is superior to the other studied benchmarks if
implemented properly.

B. Real Data Experiments

In real data experiments, we choose four binary classifica-
tion datasets named australian, breast-cancer, mushroom, and
phishing.* The detailed information of the chosen datasets
are provided in the table below (“#” means number). The

Dataset #features | #training samples | #test samples
australian 14 480 210
breast-cancer 10 500 183
mushroom 112 4062 4062
phishing 68 8000 3055

comparison results are elaborated in Table I. In real-world
datasets, the LR objective may not have a bounded sublevel
set and the converged variables could be slightly different for
miscellaneous algorithms. Whenever the Hessian matrix is close
to singular, the Moore—Penrose inverse is alternatively applied.
The proposed algorithm TOMAS achieves as good classification
performance as the other compared benchmarks but is the most
computationally efficient. In detail, TOMAS can accelerate the
benchmarks by 30% at a conservative estimate.

V. CONCLUSION

In this paper, we have investigated into the LR optimization
problem. Unlike the traditional solving algorithms which only
utilize the first- or second-order information of the objective,
we have considered the third-order derivatives in extra. The
proposed algorithm is named TOMAS and based on the MM
algorithmic framework. We have derived a novel majorizing
function using the third-order Taylor expansion. The minimiza-
tion solution is in closed-form and includes the information of
the true gradient and Hessian. Moreover, we have provided an
analysis on the convergence rate of TOMAS, which is O(1/k?).
Numerical experiments have shown the superior performance
of the proposed algorithm compared with the other studied
benchmarks.

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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