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Abstract—Non-orthogonal multiple access (NOMA) is recog-
nized as a pivotal technology for enhancing spectral efficiency and
facilitating massive connectivity in wireless communications. In
practice, users are often divided into groups that occupy different
resource blocks, while the users in the same group share the
same resource through power-domain multiplexing, leading to
multi-group NOMA (MG-NOMA). Hence, the full benefit of MG-
NOMA relies on optimum power allocation, which, unfortunately,
leads to difficult optimization problems that have not been well
solved so far. This work investigates the optimal power allocation
to achieve the maximum spectral efficiency and energy efficiency
with quality-of-service (QoS) requirements and arbitrary user
weights in MG-NOMA. We show that the complicated MG-
NOMA power allocation problems can be decomposed into two
layers, the lower layer for power allocation within each group and
the upper layer for the power budget allocation among groups.
More importantly, we reveal that, although quite difficult, the
two-layer problems both contain the hidden convexity, indicating
the achievability of the globally optimal solution. Then, we derive
the optimal power allocation in either closed or semi-closed form
for the maximum spectral efficiency and energy efficiency in
MG-NOMA, respectively. The simulation results demonstrate the
superiority of the proposed optimal power allocation schemes.

Index Terms—Non-orthogonal multiple access, weighted sum
rate maximization, weighted energy efficiency maximization,
quality of service, closed-form.

I. INTRODUCTION

The rapid advancement of internet of things (IoT) applica-
tions is propelling the development of sixth-generation (6G)
communication networks, which is expected to accommodate
substantial data traffic and device connectivity while managing
resource limitations [1]-[4]. To meet these challenges, there
is a critical need for innovative multiple access strategies that
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efficiently utilize resources and manage system complexity.
Unlike traditional orthogonal multiple access (OMA) methods
such as time division multiple access (TDMA) and frequency
division multiple access (FDMA), which are limited by their
capacity to support only a finite number of users due to the
orthogonal usage of resources, non-orthogonal multiple access
(NOMA), where multiple users are superposed in the same
time and frequency resources, offers a more efficient solution
with additional multiplexing and significantly enhances mul-
tiple access efficiency [S]-[8].

Initial studies on NOMA focused on single-group NOMA
(SG-NOMA), wherein different users are allocated different
power levels in the same resource block, such as a time slot
or carrier. The user power difference is exploited to detect the
desired signal via successive interference cancellation (SIC)
at the receiver side. Thus, the effectiveness of SG-NOMA
critically depends on proper power allocation. Various power
allocation strategies have been explored for SG-NOMA, such
as fairness-based optimization [9], total power minimization
[10], minimum error probability designs [11], [12], and sum
rate maximization [13], [14]. Energy-efficient power allocation
has been investigated in [15]-[17], and outage performance has
been evaluated in [18]. However, the served user number in
a single group is limited as the users in SG-NOMA systems
suffer poor communication performance with a larger number
of users. Therefore, to enhance system performance, excessive
users are generally divided into multiple groups in practical
scenarios.

Consequently, research attention has pivoted to multi-group
NOMA (MG-NOMA) [19], where the users are divided into
several groups. Particularly, the users in one group are assigned
to the same resource block following the SG-NOMA principle
and different user groups are assigned to different orthog-
onal resource blocks, which effectively avoids inter-group
interference. Hence, MG-NOMA is more flexible to further
improve spectral efficiency and facilitate massive connectivity
[20]. Yet, power allocation in MG-NOMA systems becomes
more complex since it requires to consider both intra-group
and inter-group power allocation. A heuristic power allocation
design [21] and several learning-based methods [22]-[26] have
been proposed for MG-NOMA, in which only the suboptimal
solutions are provided. Zhu et al., in [27], first derived the
optimal power allocation for MG-NOMA under various per-
formance criteria, but the served user number per group was
restricted to two. In line with this work, several researchers
explored the power optimization strategies for MG-NOMA
with multiple users per group. Particularly, the work [28]
investigated the weighted sum rate maximization problem in
MG-NOMA systems and tried to obtain the optimal power
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allocation via exhaustive search, which leads to a forbidden
computational complexity. Later, the work [29] obtained the
optimal power allocation for weighted sum rate maximization
in MG-NOMA systems. However, in [29] the user weights
are confined such that higher weights were designated to
users with inferior channel conditions. Consequently, so far,
the optimal power allocation for MG-NOMA with a gen-
eral performance metric, e.g., sum rate or energy efficiency
maximization with any weights and quality-of-service (QoS)
requirements, is still unknown.

In this paper, we consider, from a most general perspective,
MG-NOMA systems with an arbitrary number of users divided
into an arbitrary number of groups, where each group is
served via a single orthogonal resource block. We consider
two most common performance metrics, the weighted sum
rate (WSR) and weighted energy efficiency (WEE) of users,
where no restriction is imposed on the user weights or power
orders. We also consider QoS constraints for weighted sum
rate maximization (WSRM) and weighted energy efficiency
maximization (WEEM) to guarantee individual performance
for each user. We show that the optimal MG-NOMA power
allocation schemes, for WSRM and WEEM under QoS con-
straints, can be analytically derived or even obtained in closed-
form along with important insights. The key contributions of
our work are outlined as follows:

o We consider a general MG-NOMA system, and formu-
late two power allocation problems, i.e., the WSRM
and WEEM problems, both under user QoS constraint,
without any restriction on weights or power orders.

e We show that the formulated MG-NOMA power allo-
cation problem can be equivalently decomposed into two
layers, the upper layer for power budget allocation among
groups and the lower layer for power allocation within
each group.

o For the SG-NOMA power allocation problem, we prove
that, without loss of optimality, a group can be divided
into several independent subgroups. Each subgroup can
be treated as a virtual user and has an independent power
allocation strategy.

o Based on this finding, we are able to derive the opti-
mal intra-group power allocation in closed-form for SG-
NOMA. We further analytically characterize the max-
imum WSR of each group with respect to its power
budget. Then, we prove that the maximum WSR for each
group is convex in the power budgets allocated to the
groups, and finally analytically characterize the globally
optimal solution to the MG-NOMA WSRM problem.

o For the MG-NOMA WEEM problem, we first prove that
WEEM is equivalent to WSRM in some cases and then
provide a simple method to obtain the optimal power
allocation in the general case. We further provide a
closed-form solution to the MG-NOMA WEEM problem
under some mild conditions.

o Numerical results are provided to demonstrate that our
proposed power allocation strategies outperform the ex-
isting schemes and achieve optimal performance with low
computational complexity.

The rest of the paper is organized as follows. The system
model and problem formulations are outlined in Section II.
We investigate the optimal power allocation for WSRM in
SG-NOMA systems and MG-NOMA systems in Section III
The optimal power allocation for the WEEM problem in MG-
NOMA systems is presented in Section IV. The numerical re-
sults are presented to evaluate the performance of the proposed
power allocation schemes in Section V, and finally, conclusions
are drawn in Section VL.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Consider the downlink of a cellular MG-NOMA system
wherein a base station (BS) serves N users through M
resource blocks, i.e., M orthogonal carriers, indexed by m =
1,2,..., M. The total bandwidth B is divided into M groups,
so the bandwidth for each group is B, = B/M. The BS and
users are equipped with a single antenna.! Let IV,, be the
number of users within group m for m = 1,2,..., M, and
UE,, », denotes user n of group m for m = 1,2,..., M. In
practice, each user is often intended to use only one group,
thus we focus on this typical situation in this paper and have
N = Zn]\le N;,. The signal transmitted by the BS of group
m can be formulated as

N
Tm = E VPnmSn,m,
n=1

where s, ,, represents the message intended for UE,, ,,, with
E[|sn.m|?] = 1, and p,, », represents the power allocated to
UE,,,, by the BS for sending s, ,,,. The received signal at
UE,, , can be formulated as

N
Yn,m = hn,m E VPi,mSi;m + Zn,m

i=1

where h,, ,,, represents the channel coefficient from the BS to
UE,, ;m, and 2, ,, is the complex additive white Gaussian noise
(AWGN) with zero-mean and variance Ufl,m,
CN(0,02 ). Let apm = |hn,m|?/0% ,,, and assume without
loss of generality that the users are ordered by their normalized
channel gains such that ay ,, < @9, < --- < ap,, m. Then,
it is often assumed that the perfect channel state information
(CSI) is available at both the BS and each user. The SIC
receiver at UE,, ,,, eliminates the influence of weaker users,
ie., ¢ < n [11], [13], [28], [30]-[32]. This is an assumption
that applies to all users. Thus, the signal to interference-plus-
noise ratio (SINR) of UE,, ,,, is

ie, Znm ~

|hn7M|2pn,m
N .
(havn|? 32355 Pism + 03

Hence, the data rate of UE,, ,,, can be formulated as

SINR;, ;m =

INote that although the results obtained in this work are based on the single-
antenna scenarios, they can also provide important insights and be extended
to NOMA systems with multiple antennas.
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an,m ZZ;Z pi,m + 1

= B.log

B. Problem Formulation

In this paper, we focus on the power allocation strategy
in MG-NOMA systems. The most common objective is the
weighted sum rate of all users. User weights are introduced to
strike a balance between spectral efficiency and user fairness.
To avoid no power allocation for the users, the QoS constraints
shall also be considered. Therefore, we examine the WSRM
problem:

M N,
’PINSRM : maximize Z Z Wr,m L, m
{pmh}g:l m=1n=1
M Np,
subject to Z Z DPn,m < Pmax, (2a)
m=1n=1
Rn,m, Z TTL,TIMVWH m7 (2b)
Pnm >0, Vn,m, (2¢)
and the WEEM problem:
M N,
Z Z wn,mRn,m
PYVEEM . maximize ==1n=l
{pm M, M R
Pr+ 37 Pn,m
m=1n=1
M Ny,
subject to Z Z Pnm < Pmax, (3a)
m=1ln=1
Rn,m Z Tn,mavna m, (3b)
Pnm =0,  Vn,m, (30)

where wy, ., is the weight of UE,, ,,,, {pm}fg:l is the set of
power allocation vectors and p,, = [P1,m, P2,m., - - - ,me,m]T
is the vector of allocated powers to the users in group m.
Constraints (2a) and (3a) represent the transmitted power
constraints, where P.,.x 1S the power budget of the BS, Pr
represents the circuit power consumption and (2c), (3¢) impose
the nonnegativity constraints. Notably, the QoS constraints
(2b) and (3b) with QoS threshold 7, ,, > 0 for each n and
m, are employed to ensure that the minimal data rate of each
user is satisfied. This approach is unusual as it rarely coexists
with user weights in existing works.

III. OPTIMAL POWER ALLOCATION FOR WEIGHTED SUM
RATE MAXIMIZATION

In this section, we first decompose the MG-NOMA WSRM
problem into two layers, the upper layer for inter-group power
budget allocation and the lower layer for intra-group power
allocation. Then, we divide each group with several indepen-
dent subgroups with independent power allocation strategy and
derive an optimal closed-form intra-group power allocation
scheme. Then, we transform the inter-group power budget
allocation problem into a convex problem and seek the optimal
power allocation solution of the MG-NOMA WSRM problem.

A. Reformulation of the WSRM Problem

To solve PVSEM we first simplify (1) and introduce the
auxiliary variable q., = [q1.m;q2,m,--- ,qu,n]T, where
Gn,m = ZfV:T:L Di.m. Thus conversely, we have
_ Jam —ntim, N < Np, (4)
n= Np,.

Consequently, the formulation of rate R, ,, in (1) can be
transformed into:

NWL
14 Qn m Z Di,m

Ry = Belo i=n
o 108 1+ Q. om sz,m
i>n
_ [Belog (st ) n< N
Bclog (1+aNm,qum,m)7 n= Np,.

In this way, the weighted sum rate is equivalent to:

Nrn m_l
wn,mRn,m = Z U/n’ch IOg <
1

n=1

1+ Un mAn,m >
1+ A mAn+1,m

n=

+ wNm,ch IOg (]- + aNm,qum,m)

Nop
:Z frm (@n,m)
n=1

where f1 m (q1.m) £ w1.mBelog (1 + a1,mq1.m) and for n >
1, we have

fn,m (qn,m) = wn,ch log (1 + an,an,m) (5)

_wn—l,ch 1Og (1 + an—l,an,m) .

Furthermore, the nonnegativity constraints require ¢y, ,, >
Gn+1,m for n < N,, and gn,, »m = 0. The QoS constraint
is equal to Nn,mAn,m — Bn,m > dn+1,m f;OI' n < Ny

A _nm A
and dN,,,m > GNm,WLs where Mnym = 27 Be ﬁn,m =

Tn,m
A

(I = mm) Jonms Onm = (ZTc — 1) /0, m. Regard-
ing the nonnegativity constraints, it can be verified that
gn,,.m = O, m implies gy, » > 0 since Oy, > 0. If
Nn,mqn,m — Bn,m > dn+1,m hOIdSv we have dn,m — 4n+1,m >
(1 = Dnm) dnym =+ Bn,m > 0 for n < N,,. Thus, the nonneg-
ativity constraints of PYVSEM and PWEEM can be omitted if

the QoS constraints are satisfied.

To tackle the power allocation in MG-NOMA, we intro-
duce the power budgets {Pm}fle, where P,, represents
the power bujd\fet for channel m. Suppose that the power
budgets { P, },_, are given, then P}VS®M can be equivalently
decomposed into two layers, the upper layer for power budget

allocation among groups and the lower layer for power alloca-
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tion within each group. We first solve the SG-NOMA power
allocation problem for group m, which is formulated as

N
PWSRM. maximize Z Frm (@n,m)
Am
n=1
subjectto  q1,m = Pm, (6a)
Nn,mAn,m — Bn,m > dn+1,m, N < va
(6b)
4dN,,,m Z eNm,mn (60)

The main difficulty in solving the WSRM problem in SG-
NOMA lies in the coexistence of user weight and QoS con-
straint. User weight alters the characteristics of the weighted
sum rate and individual optimums for different users may
conflict with each other. Meanwhile, QoS constraints will
make it more complicated, which is apparently difficult to
find its solution. To address it, we introduce the following
QoS transformation.

Lemma 1. Suppose that R;,, = v;m, holds for any i =

n,...,l —1, we have
qdiom = gnﬂ’,mqn,m — Pn,i,m; (7)
. A i—1
forl 21 = ,l, where gn,i,m = H_Zj:n i m> Pn,i,m
i— . A A
Z;:n gj-‘rl,i,mﬁj,m fOF n < i and §7L,i,7n =1, Pnim = 0
for i =n.
Proof. See Appendix A. O

In addition, the following result provides a necessary and
sufficient condition on the feasibility of SG-NOMA WSRM.

Proposition 1. ’P;Y,ERM is feasible if and only if

Cl: P>V, ®)

where ¥y, i = (ON,,,m + Pn,Np.m) /En,Nyp m-
Proof. See Appendix B. O

We define U ,,, as the minimum required power budget for
group m. Now, we assume that the feasibility condition C1 in
Proposition 1 holds and seek the optimal solution to PWSRM.

B. Characteristics of the Weighted Sum Rate

In this subsection, we analyze the characteristics of the
weighted sum rate. Clearly, a feasible solution for SG-NOMA
is optimal if it achieves respective maximizer for each user.
However, the characteristics of f, , (gn,m) may not be that
ideal, where the power allocation of different users are interde-
pendent. To obtain the optimal power allocation in SG-NOMA,
we consider dividing the group into several independent sub-
groups, which have independent power allocation strategy and
their maximizers can coexist with each other. Therefore, we
shall find the users with interdependent power allocation and
group them together, which can be achieved by analyzing the
weighted sum rate. Then, we introduce the auxiliary integrated
subgroup Sy, ;. as defined below, where S,, 1., = {n,...,l}
with n < [ is the collection of successive user indices from
the n-th user to the [-th user in group m. The combination
strategy depends on the properties of the function. Therefore,

it is essential to analyze the function of the subgroup and we
first provide a rigorous definition of the subgroup as follows.

Definition 1. A subgroup S, ;. is integrated if the QoS
constraint (6b) always holds with equality at the optimal
solution to PWSRM ie, Rim=rim,fori=mn,.... 1 -1

Since QoS constraints for S, ;,, take the equality for
i = na"'al - 1’ we have Nim4i,m — ﬂi,m qi+1,m
for + = n,...,0l — 1. In this case, there always exists
the affine relationship between adjacent variables g; ., and
Git+1,m for i = ;U — 1. Through iteratively trans-
formation, all ¢;,, for i € S, ;. can be rewritten by
a linear expression of ¢n y, i€, &nimnm — Pnim =
Qi+1,m- All users belong to S, ;.. can also be viewed as
a virtual user with variable g, ,,. Furthermore, the g¢; .,
in the corresponding function f; ,, (gim) can be replaced
by an affine result of gy m, ie., fi,m (fn,i,an,m - pn,i,m)-
Next, the weighted sum rate of Sy, ;,, can be equivalently
transformed into a function of gy, ,,, which is defined as
9n,l,m (qn,m) Zi:n fi,m (gn,i,an,m - pn,i,m)- The ex-
pression gp, 1.m (qn,m) is detailed in (9) and (10) on the top
of next page for n = 1 and n > 1, respectively. Note that a
single user can also be viewed as an integrated subgroup.

As mentioned above, the integrated subgroup S, ; , may
be combined with adjacent subgroups according to the char-
acteristics of gn_1m (gn,m). The combining criteria can be
determined by the property of ¢y, i m (gn.m ). For example, sup-
pose that there exist two adjacent subgroups Sy, 1.m, Si41,k,m
are both integrated and g;41 k.m (¢i+1,m) i increasing with
respect to gj+1,m,m. In this case, the g1, always take the
maximum value and thus 7y, q1.m — Bi,m > Q41,m always
holds with equality at the optimal solution to PWSRM In
this case, Sy, ;,m and S;4 1k, m shall be combined and form a
newly integrated subgroup Smkﬂm since the other requirements
of M mGi,m — Bim Gi+1,m for S, ., are met with
the integrated characteristics of Sy, ;. and Sii g i,m. After
iterative combining until termination, the group will be divided
into several independent subgroups since any interdependent
subgroups will be combined together. The subgroup combining
method and power allocation strategy are provided in the
following results.

Denote €2y, ;,, as the maximizer of g, m (¢n,m), as-
suming the maximizer exists. We then proceed to ana-
lyze Gn.im (¢n,m) and, based on this, develop the sub-
group combining strategy. To investigate the characteristics of
Gn,1,m (@n.m), we shall consider the relation between &, ;.
and ppm. Given oy, < --- < ap,, m, it can be verified
that £, 1.m — 1 4+ @1 mPn,i,m = 0 holds, which is obtained by

gn,l,m -1+ QL mPn,lm
1—1
L —mn;
_fnlm 1+almZ§z+llm kil
i=n &m
-1
> En,l,m -1+ Z §i+1,l,m (1 - T]ifm)
i=n
= gn,l,m - fn,l,m + £n+1,l,m T el T glfl,l,m + gl,l,m -1
=&m—1=0. (12)
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l
g1,i,m (qn,m) :Z fi,m (QZ,m) - wl,ch ]-Og (]- + al,mql,m) + Z Wi mTim

i=1

In,lm (Qn,m)

l
:Z fi,m (Qi,m)

5
-1
i=1
-1
= wl,ch IOg (1 + al,mel,qum - Oél,mpl,l,m) + Z Wi mTi,m- (9)
i=1
-1
= wl,ch log (1 + al,le,m) - wn—l,ch 1Og (1 + an—l,m‘]n,m) + Z Wi mTi,m (10)
1=n
-1
wl,ch 108; (]- + alnnfn,l,mqn,m - al,mpn,l,m) - wn—l,ch 10g (1 + an—l,m‘]n,m) + Z Wi, mTim-
=n
wl,mal,mfn,l,m — Wn—-1,m%®n—1,m + Wpn—1,mOUn—1,mA¥U,mPn,lm (11)

1—‘n,l,m, =

(wnfLm - wl,m) O57171,7nal,7n€’rL,l,7’rL

The combining target and criteria can determined by the
property of the function. Thus, we provide the monotonicity
conditions of gy, ;,m (gn,m) in the following results.

Lemma 2. Given a1, < -+ < an, m» Gnim (Gnm) IS
monotonically nondecreasing in gy if the following condi-
tion is met for n > 1:

C2: 13)

Wi,m 2 Wn—1,m-

Then, Mp—1,mn—1,m — Bn—1,m = Qn,m is met at the optimal

solution of PyVSEM,

Proof. See Appendix C. [

In this case, we define Sy, ; ., as a nondecreasing subgroup.
This leads to the necessity of combining &, ; ., with the
preceding subgroup if m > 1, specifically, the subgroup
encompassing UE,,_1 ,, since n—1mn—1,m — Bn-1,m =
Gn,m- As for n = 1, one can observe that gi i (q1.m) iS
monotonically nondecreasing in g; ,, according to (9). Thus,
the integrated subgroup S; ;. is nondecreasing. Next, we
analyze the monotonicity of gn ;m (¢n,m) if C2 is violated,
which is given below.

Lemma 3. Given ay,, < < an,, m» there exists a

maximizer Qp, 1m = Max{Ly 1.m, Ynm} fOr gnim (@nm) if
the following condition holds for n > 1:

C3: Wi,m < Wn—1,m, (14)
where I'y, |, is given by (11).
Proof. See Appendix D. [

In this case, we define Sy, ; ,, as a subgroup which has a
maximizer €2, ; ,,. Hence, for any integrated subgroup S, ; .,
either C2 or C3 will be met and it is nondecreasing or has a
maximizer {2y, ; m.

C. Optimal Power Allocation for Single-Group WSRM Prob-
lem

In this subsection, we formulate the closed-form optimal
power allocation for the single-group WSRM problem, i.e.,

’P;Yn%RM. As summarized in Section III-B, the weighted sum

rate function for any integrated subgroup is either nonde-
creasing or has a maximizer. According to Lemma 2, two
adjacent integrated subgroups can be combined if the latter
is nondecreasing. Furthermore, when two adjacent subgroups
Sn,i,m and Spyq ., reach their respective maximizers, i.e.,
Gnm = Qo im and qi41,m = Qi41,k,m, the solution will be
infeasible if the QoS constraint 7y, q1,m — Bi,m = Gi+1,m iS
violated, and the criteria for potential combining is provided
as below.

Lemma 4. Suppose that two adjacent integrated subgroups
Sn.i,m and Si1 1 j;,m which have respective maximizers, these
two subgroups shall be combined to yield a newly integrated
subgroup Sy, j..m unless the following condition holds:

C4: fn,l—&-l,an,l,m — Pn,l+1,m > Ql+1,k,m~ (15)

Proof. See Appendix E. O

After iteratively combining until termination, we define
{Us s}, as an independent group dividing scheme and
T, as the number of the subgroups in {Uy ,,}m . Only the
initial subgroup in {Ut,m};[;"l remains nondecreasing, as any
other nondecreasing subgroup would be combined with its
preceding subgroup according to Lemma 2. The remaining
subgroups have respective maximizers, and C4 holds between
adjacent subgroups. Otherwise, the adjacent subgroups will be
combined according to Lemma 4.

Since the affine relationship between the users in the
same integrated subgroup has been confirmed above, the
power allocation of users can be excluded from consideration
except the initial user in each subgroup. For convenience
of notation, we use J;,, and L;,, to represent the initial
and final user indices in U, ,,, respectively. Thus, we have
ut,m = {Jt,ma Jt,m +1,..., Lt,’m}, Jl,’m =1, LTm,m = Np,.
One can observe that L;_1 ,,+1 = J; ;,, holds for ¢ > 1 due to
the adjacency between U;_1 ,, and U; ,,. Furthermore, C4 can
be equivalently reinterpreted as ¢ ., ®tm — 6¢,m > Pig1m
for t = 2,...,T, — 1, where ®;,, = Qy, . r,,.m for
t > 1, and wt,m = ng,,m,Jf,_H,m,m’ 5t,m = PJt.m,Jt41,m,m
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wt,m(bt,m -

= flaJt+1,77L7mAt7m - th,'nth«#l,num

Jir1,m—1
= fl,JtJer,mAt,m -
=1

= £I;Jt+1,m77”At7m = P Jis1,m,m

> Pip1m = &1,y mom Nt 1m — P1 Ty e

6t7m = th,vat+1,m,m (gl:Jt,'m:mAtam - pl,Jt,m,m) = PJt,msJe41,mm

> &Gt mBim

6
Jt,m—1 Jig1,m—1
Y GiremmBim— Y &Gt mmBim
i=1 i=Tem
(16)

Algorithm 1 Group Dividing Method for Group m
1: Inmitialization: {St}tTgl, where S; = {t} and T, = N,,.
2: while {S;} is not independent do
3: fort=2to7T,, do
4
5

if S, is nondecreasing then
S; is combined with S;_1: Si—1 = Si—1 U Sy
S; =841 fori > t; T,,, = T,,, — 1; break;

6: else if C4 does not holds between S; and S;_; then

7: S; is combined with S;_1: S;—1 = Si—1 U S
S; =841 fori >t; T,,, =T, — 1; break;

8: end if

9: end for

0: end while

1: Set Uy, =S fort =1,..., T,
: Output: {L[t,m}tT;”l.

—_

—_
N

for t = 2,...,T,, — 1. In this case, the users in group m
can be divided into 7T, subgroups with independent optimal
power strategy, otherwise there will be two adjacent subgroups
to be combined together according to Lemmas 2, 3 and 4.
The process of group dividing for group m is described
in Algorithm 1. Now, we consider the independent power
allocation strategies for the subgroups in {U/; .}, and the
optimal solution can be characterized in closed-form.
Theorem 1. The optimal solution to Py, M
QZ,m = gl,n,um — Pln,m forn € ul,m and

is given by

x .
Qn,m = mn {fmePm — P1,n,m, thym,n,m(pt,m - th,mJLam} )

for n € U, t > 1, where {utvm}fgl is the independent
group dividing scheme for group m.

Proof. See Appendix F. O

Before proceeding to the main results, we start from the
following toy example to gain some insights.

Example 1. We investigate a single group m, with N,;, = 3
users within the group m. For convenience of discussion, the
group index in Example 1 is omitted. Suppose that the channel
gain set C = {1,4,16}, QoS constraint set V = {1,1,1} and
weight set W = {1, 2,3}, where the n-th element in C, V and
W represents the channel gain «,,, QoS constraint r,, and user
weight w,, for UE,,, respectively. In the initialization phase at
line 1 of Algorithm 1, each user can be viewed as a subgroup,

ie., T, =3, 8" = {1;, SO = {2}, S = {3}. It follows
from Lemma 2 that 82(0 is nondecreasing since w; < ws. In
this case, the condition at line 4 of Algorithm 1 is satisfied
and the line 5 of Algorithm 1 will be implemented. Then, 82(0)
will be combined with S\, i.e., S = 8O Us = (1,2},
the original S:go) is adjusted to the newly 82(1) = Séo) = {3}
and 7,,, = T,,, — 1 = 2. In the next loop, according to Lemma
2, 82(1) is also nondecreasing since we < ws. Similarly, 82(1)
will be combined with newly Sfl), ie., 89) = S{l) U Sél) =
{1,2,3} and T}, = T}, —1 = 1. Finally, the three user in group
m form a subgroup and we have T,,, = 1, U ,, = {1,2,3}.
Then, the closed-form optimal power allocation is given by
G = E1nm P — p1.n,m for n=1,2,3.

Therefore, the users in ’P;}’,SRM can be transformed into
several integrated subgroups and the monotonicity of the
corresponding weighted sum rate function is characterized by
Lemma 2 and Lemma 3. Furthermore, the independent group
dividing scheme is obtained via Algorithm 1 and the optimal

solution to PQ’VTERM is provided through Theorem 1.

D. Optimal Power Allocation for Multi-Group WSRM Problem

In Section III-C, we have successfully characterized the
optimal weighted sum rate analytically and formulated the
optimal intra-group power allocation in group m for P;Y,ELRM.
Drawing from the insights derived from Lemmas 2, 3 and
4, we can segregate users in group m into T,, integrated
subgroups. The optimal power allocation of P3"5%M is then

elucidated in Theorem 1. Regarding the subgroup U, ,, for
t > 1, the optimal solution achieves

Pm Z At,m7
Pm < At,m7

q* _ gl,Jt,m,um - Pl,Jt,,,L,m,
Temim q)t,ma
where Ay, £ (@t,m + pl,tlt,num) 161,44 pp,m for t > 1.
Conversely, @, = &1,7,.,,,mMt,m — p1,4,,,,,m Tor t > 1. For
convenience of notation, we denote the lower bound of P, as
A1, +1.m = Y1 . It follows from (16) that A; > Avgrm
is satisfied for ¢t = 2,...,7,, — 1. In addition, we have
ATm,m > ATerl,m since (I)t,m = Q,]t,m,Lt,m,m > \IIJt,m,m
according to Lemma 3.

In line with the variable transformation detailed in Lemma
1, the weighted sum rate function of the integrated subgroup
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7
wt,mdt,mgt,mB o th,,m»maLt,m,7m§17Lt,mvac
1+ OA[t’mét’mAtym — OA[t’mﬁt_’m 1+ O‘Lf,,m,mgl,Lt,m,mAtmL — QL4 1 ymPL,Ly 1y ym
thﬁm,maLt,m,mfl,Ltﬁm,ch th_lym,mOéL,,_lym,mfl,Jt,m,ch
1+ O‘Lt’m,ngtwm,Ltym,mq)t,m - O‘Ltym,,mthYm,,an,m 14 aJt,Lm,m(I)t,m
thfl,rn7maLt—1,fm,7n£11Jt,WL17"‘BC/77L(’,71,m,7m wtfl,mdtfl,métflsch (17)

1 + aLtflmn7m§Lt71,1nymAt7m -

aLt—l,m7mth—1,m~,m

1+ O‘t—l,mgt—l,mAt,m — Qt—1,mpPt—1,m

Uy can be equivalently transformed into a function of
4Jy m,m> which is given by

(ybt,m (;/]Jt,m,m)
> fum (@nm)

n=J¢ m
Lt m

= 2

7L=Jt‘7n

(18)
fn,m (th,mrvnvmq‘]t,nu"n - th,m7n77n) :

If P, < Ay, fort > 1, the optimal solution achieves R;‘Lm =
Tn,m for n < L; ,, and we have

Lim
Z fn,m <Qn7m> Z wmmrn,m + Gmm (Pm) )
n=1 n<L¢ m

where

Gt (Pm) 2 4, B10g (14 Gt P = Gtmtm )

A A N A £ A
wt;m = th,num’ atam = aLt,wnm’ §t7m = fLLt,mvm and

~ A

Ptom = P1,Ly mmm
As for P, > At ., we have qJL wm = Pipm and
Lim

Zn;h,m From (@n.m) = @im (Pi ) for i > t. For conve-

nience of comparison between P, and A;,,, we introduce
auxiliary index t* = argmin{t| P, > A¢,»} — 1. Since
At > Apy1n holds for ¢t = 2,...,7, — 1, we have
Pn > ANy if @ >t and P, < A;, if © < t*. In this
way, the weighted sum rate function for group m is given by

Nm,
) :Z fn,m (qr*z,m)
n=1

19)

i (P + S b (50,)
t=2
= G+ m (Pm) + Yo m,

where Y ,,
constant.

Obviously, F,,, (P,,,) is a piecewise and continuous function.
In addition, F, (P,,) is differentiable within each interval.
As for any junction bridging adjacent intervals A; ,,,, we have
Atjm > Wi, and thus Qy, r, . m =Ty, L, ,.m. It can
be verified that F,, (P,,) is differentiable at the junction A, ,
according to (17). For convenience, the constants In2 in the
denominators is omitted.

Consequently, F,,, (P,,) is differentiable and its derivative
can be formulated as

dF,,
dP’V?L

= Zn<Lt‘m Wn,mTn,m + Zi>t ('biﬂn ((I)lym) is a

Wi m Qgx mgt* ch

— d . o)
(1 + G mft* — Qg m P, ) In 2

It is evident that the derivative of F,, (P,,) is continuous
and monotonically decreasing in FP,,, which implies that
F,, (P,,) is a concave function (See Theorem 12.18 in [33]).
As previously elaborated, the optimal solution of ’P;}’nisM can
be achieved with given power budget P,,, and the optimal
weighted sum rate for group m is characterized by F,,, (Py,)
in (19). This characterization allows the optimal power allo-
cation for maximizing weighted sum rate to be equivalently
transformed into power budget allocation problem, which is
delineated as

M

PIVSEM . maximize E F,, (Py)

{P’”}'m, 1 m=1

M
subject to Z P, < Phax,
m=1

Pm 2 \Ill,m7vm'

(21a)

21b)

Given the concavity of Fy, (P,,) and the linearity of con-
straints, PyVSEM is proved to be a convex problem. As a result,
it can be solved via standard convex optimization toolboxes,
e.g., CVX [34]. Despite this, we are able to analytically
characterize the optimal solution via exploiting the Karush-
Kuhn-Tucker (KKT) conditions, as detailed in the following
result.

PWSRM

Theorem 2. The optimal solution to is given by

o) ) \Ill,m} )
(22)

where &m (N) , W (A, Em (N, pm (N) are the re-
lated coefficients at different intervals, which are listed as
follows:

_ "I’m()\)Bc Pm(A) 1
Pm_max{ Az TE0) T anen

D G () = @1 0 (A) = @i Gn (V) = E1m-
Pm (>\) = P1,m> if A < ﬁ, } R

2) d'm ()\) = dt ms wm ()\) = U}t,m’ {m (>\) ft,m’
P (N) = prms if X dby <A< g for t > 1.

In the above, A is chosen such that Z M = Poax.
Proof. See Appendix G. O

The fact that P, is monotonically decreasing in A suggests
that the optimal A\ satisfying Zm 1 max can be effi-
ciently found through a bisection method. Hence, our proposed
OPA WSRM method in MG-NOMA systems is provided
by Algorithm 2. After decomposing PYVSEM into several
problems, we analyze the characteristics of the weighted sum
rate function for the subgroup in P;YT,SLRM and design a group

m:

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on October 09,2025 at 10:04:47 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2025.3616144

Algorithm 2 The Optimal Power Allocation for Weighted Sum
Rate Maximization (OPA WSRM)

1: Obtain {U; ,, }/7 using Algorithm 1, Vm;

dFy
d‘Ill,l 1ce

2: Set precision €y > 0, A\, = max{
/\d = O;

3: while A\, — \g > ¢) do

A=A+ ) /2

5. Obtain P,, according to (22), Vm.

M
6: if > P, > Ppax then
1

dFy
S dWy [0

»

7 A=A\
8: else

9: A = A
10:  end if

11: end while
12: Obtain {q;7m}§;L1 using Theorem 1, Vm;
13: Obtain {pz)m}Nm according to (4), Vm.

n=1

dividing method. Based on the group dividing scheme, we pro-
vide a closed-form solution and the weighted sum rate function
for ’P;YnisM. Consequently, P/VSEM can be transformed into
a convex problem PyVSRM By exploiting the KKT conditions
of PYVSEM " the optimal solution to PyVSEM ig characterized

in semi-closed form.

E. Complexity Analysis

In this subsection, we examine the complexity of different
power allocation schemes. For each group m, the combining in
Algorithm 1 is performed at most /V,,, — 1 iterations. Thus, the
worst case complexity of Algorithm 1 for group m is O (Np,).
Since Algorithm 1 is implemented independently among M
groups, the overall complexity in multi-group NOMA system
is Z%Zl O (Ny,) = O(N). Then, we discuss the compu-
tational complexity of our proposed OPA WSRM method in
Algorithm 2. In each iteration of Algorithm 2, we obtain P,
for each group with given X\ via (22), which is performed
among M groups and requires O (M) operations (additions
and multiplications). Moreover, the complexities of intra-group
and inter-group power allocation in Algorithm 2 are O (N)
and O (IwsrM ), respectively, where Iwsg is the number of
iterations. Taking into account the complexity of Algorithm 1,
the overall complexity of optimal power allocation for WSRM
problem is O (N + Iwsr M).

We also provide the complexity analysis for several MG-
NOMA sum rate maximization methods within the existing
works. As detailed in [29], the Bisection method is performed
with complexity O (N + IgM), where Ip is the number
of bisection iterations. In [28], the multi-carrier power con-
trol (MCPC) algorithm employs the dynamic programming
method to maximize the weighted sum rate, where the power
budget is allocated into J parts and the overall complexity
is O (N3 +JN? + JQM). In addition, a remaining power
sharing (RPS) method has been developed in [21] and the
overall complexity is O (N).

IV. OPTIMAL POWER ALLOCATION FOR WEIGHTED
ENERGY EFFICIENCY MAXIMIZATION

In this section, we seek the optimal solution of the MG-
NOMA WEEM problem. We first transform the original
WEEM problem from a nonconvex fractional programming
problem into several convex subproblems. Then, by exploiting
the KKT conditions, we obtain the optimal power allocation
scheme for the WEEM problem in semi-closed form. Finally,
we further show that an optimal solution can be derived in
closed-form.

A. Optimal Power Allocation for the Multi-Group WEEM
Problem

In this subsection, we present the optimal power allocation
scheme for PYVEEM  Notably, given the total transmit power
Z%Zl Py, PYVEEM g equivalent to PVSEM in MG-NOMA
systems. However, it is hard to determine the optimal total
transmit power since the monotonicity of WEE with respect
to the total transmit power in PYVFEM ig not established.
Therefore, we propose a novel design to solve the WEEM
problem. Based on the weighted sum rate function F, (Py,)
derive in PQ’}ERM, we also transform the MG-NOMA WEEM
problem into inter-group power budget allocation problem.
By transforming the fractional programming problem into
several subtractive form subproblems, we derive the optimal
solution of the subproblems. On this basis, we are able to
incorporate existing complex two-layer iterative solution into a
low-complexity bisection based single-layer iteration method.

In this way, we first transform problem PVEEM into a
power budget allocation problem, which is formulated as
follows:

M
WEEM Zﬂ i
P
PT“‘ Z Pm
m=1
M
subject to Z P, < Phax, (23a)
m=1
Py > Uy, Vm. (23b)

Clearly, PyVEEM is a nonconvex fractional programming
problem, and the challenge in solving it lies in the fraction
form of the objective function. As proved in Section III-D,
F,, (P,,) is a concave function and the denominator of the
objective function in P;N EEM s an affine function. Hence,
the optimal solution of PyVEEM can be obtained via the
well-known Dinkelbach’s method [35], which has been used
in many existing works of fractional programming problem.
In Dinkelbach’s algorithm, we transform Py'FEM into an
equivalent subtractive form as follows:

PIVEEM . maximize G ()
{Pm}hi_,
M
subject to Z P, < Prax, (242)
m=1
Pm Z \Ijl,m.; vma (24b)
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where G (v) = an\le Fo (Pn) — v gPT + 2%21 Pm)

and v is a non-negative parameter. Py EEM can be viewed

as an amended version of PWSRM with an extra term

—v (PT + Z
the convexity. Hence, similar to PyVSRM DPWEEM can also
be solved by standard convex optimization methods, which is
common in existing works. Solving WEEM problem can be
equivalently transformed into finding an v satisfying G (v) =
0 [36]. However, this forms a two-fold iterative procedure and
each iteration of updating v requires significant computational
complexity. By this method, the complexity of formulating the
optimal solution to P;N EEM is intolerable. Nevertheless, the
optimal solution of P3VEEM can be obtained via exploiting the
KKT conditions and the optimal power allocation of PyVSEM
is provided in the following results.

Theorem 3. PYVEEM s equivalent to PYVSRM if and only if
the following condition holds:

m), which is linear and does not violate

M
5 B (PYS)
PT > m=1

C5:

— Pax = P, (25)

AWSR

where {PWSR*} _, and Awsr are the optimal power
allocation and Lagrange multiplier at the optimal solution

to PV SRM " respectively, R}hr represents the constant power

threshold.

Proof. See Appendix H. O
Next, we consider the optimal solution to PyVEEM . For

convenience of statement, we introduce an auxiliary parameter
X = A+ v, where A is the Lagrange multiplier for (23a).

WEEM
Ps

Theorem 4. The optimal solution to is given by

P, = maX{m(x)Bf Pm(X)

1
xIn 2 Em(X) CYm(X)gm(X) ’ \Ill,'m} ’

(26)
where G (X) » Wm (X) » &m (X) ., Pm(X) are the same
as listed in Theorem 2, and x is chosen when one of the
following conditions holds:

M
C6: Y, Py < Phaxand G(x) =0;

m=1
M

C7: > Py, =Ppaxand G(x) <0
m=1

Proof. See Appendix 1. O

The optimal power allocation to Py¥*EM is fully character-

ized by Theorem 4. Denote v and x of the ORtlmal solution to
PIVEEM by * and x*, respectively. For > " P, < Prax,
we have A = 0 and x = v according to (41), 1mplymg X > X"

if G(x) <0 and x < x*, otherwise. If E 1 P > Poaxs
we have xy < x*, since P, is monotomcally decreasing in
x according to (26). Thus, the optimal y can be found via
a simple bisection method and the optimal power allocation
for the WEEM problem is provided by Algorithm 3. One
can observe that (26) is the same as (22), which implies
that the power allocation of MG-NOMA WEEM is equal to
that of MG-NOMA WSRM if the corresponding Lagrange

Algorithm 3 The Optimal Power Allocation for Weighted
Energy Efficiency Maximization (OPA WEEM)

1: Obtain {U; ,, }1 using Algorithm 1, Vrmn;

2: Set precision &, > 0, x, = max{d%pl?lv--wd?p?fw }’
Xa = 0;

3: while x, — xq > ¢, do

4 x=(Xutxa)/2

5: Obtam P, according to (26), VYm;

6: if ZP < Puax and G (x) < 0 then
m=1

7 Xu = X5

8 else

9: Xd = X

10:  end if

11: end while
12: Calculate {g;, m} ™ using Theorem 1, ¥Ym;
13: Obtain {pn’m}n:'1 according to (4), Vm.

parameters achieve the same value, i.e., x = A. It is also
consistent with the fact that, given the total transmit power,
the WEEM problem can be equivalently transformed into the
WSRM problem in MG-NOMA system, since the denominator
of the objective in WEEM is fixed.

B. Closed-Form Optimal Power Allocation for the Multi-Group
WEEM Problem

In this subsection, we derive the optimal power allocation
of the MG-NOMA WEEM problem in closed-form. As sum-
marized in Section IV-A, PyVEEM can be solved by updating
x until G (x) = 0. Then, it poses a new method to establish
the power allocation strategy by directly solving the equation
G (x) = 0. To solve the equation, we introduce the Lambert
W function [37], termed W (-), which is the inverse function
of we®. Then, the closed-form optimal solution to PyEEM g
provided in Theorem 5.

d Fm

Theorem S. Suppose that x < 4 As holds for each group

M
and Z P, < Ppax, with

m=1
M
A N
L ( ) 7 Z PmTe (27a)
Mop _1
B=Ppy Y Om (27b)
m=1 S1,m al,mfl,m
M N ~ ~
N Wi1,mQq mfl ch
C= mBel —_
3 g Dnfmnlt
D m A m 3 ch
FTy - DOt De 270)
D ch o m 1
_ wl,l Plm = Ym.  (27d)
XIn2 61 m Qajq, mfl,m
Then, the optimal solution to PyY*M is given by (27d).
Proof. See Appendix J. O
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Algorithm 4 The Closed-Form Optimal Power Allocation for
Weighted Energy Efficiency Maximization (CFOPA WEEM)

Dividing the users using Algorithm 1 to obtain {Ly ,,, } -7y
Calculate x according to (27a), Vm;

Calculate P, according to (27d), Vm;

Obtain P,, = max {P,, V1 n}, Vm;

Obtain {q;”m}fygl using Theorem 1, Vm;

Transform {qj‘mn}ﬁ:’gl into {p,*wn}g;‘l according to (4),
Vm.

A A o e

Remark 1. After finding a x such that G () = 0, P, shall be
achieved by (26) rather than (27d) since x < dC/l\P; - may not
be satisfied for each group and lead to P,, < ¥y ,, with (27d),
which violates (23b). Thus, the details of the corresponding

solution is presented as Algorithm 4.

C. Complexity Analysis

Now, the complexity of Algorithms 3 and 4 is investigated
in this subsection. As mentioned before, the complexity of
obtaining the optimal group division scheme and intra-group
power allocation is O (V). Assuming that Algorithm 3 con-
verges after [ywgg iterations, the inter-group power allocation
complexity is O (IwggM). Therefore, the overall complexity
of Algorithm 3 is O (N + IwgrM). In Algorithm 4, the inter-
group power allocation is obtained in closed form and the
related complexity is O (1). The complexity of calculating
the parameters in (27b), (27¢) and (27d) is O (N). Thus, the
total complexity of our proposed closed-form optimal power
allocation scheme is O (N).

In this subsection, we also analyze the complexity of
several energy efficient power allocation schemes within the
prior works. Specifically, the authors in [29] proposed a
Dinkelbach algorithm with inner subgradient (D-Subgradient)
method. The total complexity of D-Subgradient method is
O (N + CpsIpsM), where Cps and Ipg are the itera-
tion number of the Dinkelbach algorithm and subgradient
method, respectively. The Dinkelbach with inner MCPC
(D-MCPC) [28] method can be utilized to maximize the
weighted energy efficiency, where the fractional program-
ming problem is converted into several subproblems and
each subproblem is solved via MCPC method [28]. The
total complexity of Dinkelbach with inner MCPC method
is O (Cucpc (N®+ JN? + J?M)), where Cycpc is the
number of Dinkelbach iterations and J represents the number
of power budget divisions.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed power allocation methods via numerical simulations. We
consider M = 4 orthogonal groups with N,, = 3 users for
each group. The total bandwidth is B = 4 MHz and equally
divided to M groups with bandwidth B, = B/M =1 MHz.
The users are uniformly distributed in a cell with a radius
of 500m and the BS is located at the center. The mini-
mum distance between users is set to be 20m. The channel
coefficient h,, , = PLy mGn,m consists of the path loss

exponent PL,, ,, = 128.1+37.6 log,ydy,m [38] and the small-
scale fading coefficient gy, ,,,, wWhere d,, ,, is the distance in
kilometers and g, ,, follows independent and identical zero-
mean unit-variance complex Gaussian distribution. The noise
spectral density is Ny = —174 dBm/Hz and noise power is
07 ;n = BeNo. The BS power budget Prax = 35 dBm and the
circuit power consumption Pr = 30 dBm. The weights and
QoS requirements are randomly generated to comprehensively
cover all potential cases. Thus, the users’ weights are generated
uniformly at random in [0, 2], ensuring that the mean user
weight is equivalent to 1, ie., Efw,,,] = 1. The QoS
thresholds are generated uniformly at random in [0, 2] Mbps.
We calculate average WSR, WEE, QoS satisfaction ratio and
total transmit power of the proposed power allocation method.
The QoS satisfaction ratio is the ratio of users which satisfy
the QoS constraints (2b) and (3b). In Figs. 1-6, all simulation
results are averaged over 1000 random channel profiles.?

We compare the proposed methods with several power
allocation algorithms, which are designed to address similar
problems in MG-NOMA systems within the existing works.
The exhaustive search (ES) method is employed to determine
the optimal solution. The optimal solution for WSRM and
WEEM problems obtained via the ES method are charac-
terized as ES WSRM and ES WEEM, respectively. In the
recent RPS [21] scheme, the remaining power is shared among
all users after satisfying all constraints. In the Bisection
scheme [29], the power allocation is obtained via bisection
method. In the D-Subgradient [29] scheme, an energy efficient
solution is obtained via outer Dinkelbach method [35] and
inner subgradient method. In MCPC [28] scheme, the inter-
group power allocation is obtained via dynamic programming
[39] and the intra-group power allocation is formulated as
the recursive computation. The D-MCPC scheme employs
the outer Dinkelbach method [35] and inner MCPC [28]
method to solve the MG-NOMA weighted energy efficiency
maximization problem.
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Figure 1. WSR and QoS satisfaction ratio of different algorithms versus

power budget.

2The source code can be obtained from

https://github.com/Slyz060304/Multigroup-NOMA.
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Figure 2. WSR and QoS satisfaction ratio of different algorithms versus the
number of users per group.

Fig. 1 displays the average WSR and QoS satisfaction ratio
of RPS, Bisection, MCPC, ES WSRM and our proposed OPA
WSRM. In Fig. 1, the BS power budget P, varies from
25 to 40 dBm. The WSR for each algorithm increases with
respect to the maximum power since more power budget
can be exploited to increase the WSR for each group, as
shown in (20). Our proposed OPA WSRM method achieves
far better WSR than RPS and Bisection since the user weights
are omitted in these algorithms, which makes MG-NOMA
system fail to allocate more power to users with higher weights
and degrades the system performance. Our proposed method
OPA WSRM achieves exactly the same performance with ES
WSRM that used the exhaustive search method, demonstrating
the optimality of the proposed power allocation strategy. One
can observe that the average QoS satisfaction ratio of MCPC is
less than 52% because the QoS constraints are neglected in the
design of MCPC algorithm and insufficient power allocation
is allocated to the users with lower weights.

Fig. 2 shows the performance achieved by various schemes
versus the number of users per group. In Fig. 2, the number
of users per group N, is the same among all groups, which
varies from 2 to 5. Similar to Fig. 1, Fig. 2 shows that
our proposed OPA WSRM achieves better WSR than RPS
and Bisection methods. Meanwhile, OPA WSRM displays
equivalent performance with the exhaustive search method
because of the optimality of our proposed strategy. It is shown
that WSR improves as the number of users increases due to
the enhanced spectral efficiency resulting from the increasing
accessed users. The QoS satisfaction ratio of MCPC is less
than 70% because the QoS constraints are omitted with these
methods.

The WSR and QoS satisfaction ratio of various schemes
versus the number of groups are exhibited in Fig. 3. The
bandwidth for each group remains B, = 1 MHz and the
corresponding total bandwidth is B = M x B.. In Fig. 3, the
number of groups ranges from 2 to 5. Since the user weights
are omitted in RPS and Bisection methods, our proposed
OPA WSRM achieves superior WSR compared to RPS and
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Figure 3. WSR and QoS satisfaction ratio of different algorithms versus the
number of groups.
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Figure 4. WEE and QoS satisfaction ratio of different algorithms versus
power budget.

Bisection methods. Similar to Fig. 1, it is shown that its
QoS satisfaction ratio of MCPC is less than 55%. In Fig. 3,
the WSR is proportional to the number of groups and the
QoS constraints for all algorithms due to increased users.
It is efficient to serve more users by increasing the number
of groups. However, more time-frequency resources are also
utilized for extra groups.

Figs. 4, 5 and 6 display the average WEE and QoS satisfac-
tion ratio of RPS, D-Subgradient, D-MCPC, ES WEEM, OPA
WEEM and CFOPA WEEM versus power budget, number
of users per group and number of groups, respectively. Figs.
4, 5 and 6 show that the average WEE of our proposed
OPA WEEM and CFOPA WEEM schemeS outperforms RPS
and D-Subgradient methods. It is shown in Figs. 4, 5 and
6 that our proposed OPA WEEM method achieves exactly
equal performance with the exhaustive search method, which
proves that it is the optimal solution to WEEM problem.
Figs. 4, 5 and 6 reveal that the QoS satisfaction ratio of
D-MCPC remains below 70% due to the absence of QoS
constraints in its derivation. Thus, it fails to support more
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Figure 5. WEE and QoS satisfaction ratio of different algorithms versus the
number of users per group.
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Figure 6. WSR and QoS satisfaction ratio of different algorithms versus the
number of groups.

users, although it achieves higher average WEE than our
proposed OPA WEEM. It is shown in Fig. 4 that the average
WEE of RPS method decreases with power budget because the
full power budget is utilized in RPS. In contrast, the average
WEE of D-Subgradient, D-MCPC, ES WEEM, OPA WEEM
and CFOPA WEEM remains constant with different power
budgets, which suggests that the optimal transmit power is
not the maximum power budget. As presented in Fig. 5, the
WEE improves with the user number because WSR increases
with user number even with the same total transmit power.
From Fig. 6, one can observe that increasing the number of
groups will provide notable spectral efficiency enhancement
for all methods. Figs. 4, 5 and 6 show that the average WEE
of our proposed CFOPA WEEM is equal to OPA WEEM since
the constraint in Theorem 4 will be violated in a few instances
and the performance gap can be ignored.

Fig. 7 is obtained in a single channel profile to depict the
total transmit power at the optimal point of OPA WEEM
with different BS power budgets, where the circuit power
consumption Pr varies from 30 to 55 dBm. In all cases, total
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Figure 7. Total transmit power versus circuit power consumption

transmit power is smaller than BS power budget P, if Pr is
smaller than the corresponding constant power threshold P%hr,
which is given by (25). Otherwise, the total transmit power is
equal to BS power budget. In this case, the WEEM problem
can be equivalent into WSRM problem, which coincides with
Theorem 3.

VI. CONCLUSION

In this paper, we have studied the power allocation in
MG-NOMA systems to maximize the weighted sum rate and
weighted energy efficiency under QoS constraints. We first
provided the closed-form optimal power allocation for SG-
NOMA WSRM problem and obtained the WSR function
for each group. Next, we have proved that the WSRM and
WEEM problems in MG-NOMA systems can be equivalently
transformed into inter-group power budget optimization prob-
lems. Then, the optimal power allocation for the MG-NOMA
WSRM problem was analytically characterized. We have also
reformulated the MG-NOMA WEEM problem into an equa-
tion of weighted energy efficiency and developed the optimal
solution in closed-form. The simulation results have shown
that the proposed power allocation schemes achieve superior
performance. The extensions of the framework developed in
this paper to enable robust designs and under imperfect CSI
and SIC are valuable topics for future work.

APPENDIX

A. Proof of Lemma 1

One can observe that (7) holds for ¢ = n. As for ¢ > n,
Ri,m = Ti,m is equivalent 0 Git1,m = NimQk,m — ﬁi,m for
i =mn,...,l = 1. Thus, for ¢ = n+1,...,l, ¢;m can be
expressed by ¢;_1 ., and subsequently by g, ,,, as indicated
in the following result, which completes the proof.
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dgn,l,m wl,mal,mfn,l,ch

wnfl,manfl,ch

dgn,m

(1 + al,mgn,l,an,m - O‘l,mpn,l,m) In 2 (1 + an—l,an,m) In2

(wl,m - wnfl,m) O‘nfl,mal,mgn,l,mBCQn,m + (wl,mal,mgn,l,m — Wn—-1,m0n—1,m + wnfl,manfLmal,mpn,l,m) Bc

(1 + al,mgn,l,an,m - al,mpn,l,m) (1 + Oln—l,an,m) In2

(29
> (Wim — Wn—1,m) On—1,m%m&n,l,m Benm + Wn—1,m%n—1,m (§ntym — 1 4 QU mpn,im) Be > 0.
N (14 2t mén t;mGnm — UmPn,im) (1 + Qn1.mGnm)In2 N
d29n,l,m _ wl,mo‘l%mfi,l,ch n wnfl,ma%z—l,ch
ar? , ., (1+ tméntmTntm — Cmpnim) M2 (14 an_1mlnim)’ In2
_ Wa-1m (Wi m — Wn—1,m) a%_lych 30)
wim (1+ an_l,anJ’m)Q In2
(JZ,m = g.h,m,n,mq}tym,m = PJt,myn,m
= 31

= min

min {7, .nm (§1,0m P = P10, m) = Plemnms Edemnm®m = Py |
gl,n,mpm - pl,n,m7£Jt,m,n,m(I)t,m - th,m,n,m}

qi;m = Ni—1,m%i—1,m — 51—1,7rL

= Ni—2,mMi—1,m%i—2,m — Ni—1,mBi—2,m — Bi—1,m

1—1 1—1
= H Njm | Qn,m — E £j+1,i,mﬁj,m
j=n j=n

(28)

= gn,Lan,m — Pn,i,m-

B. Proof of Proposition 1

Rim > Tim is equivalent to giyi.m < im@im — Bim
for ¢ = n,...,l — 1. Through similar iterative substitutions
in (28), we have q;,m < &n.0.mGn,m — Pn.,i,m. By substituting
(6¢) into it with [ = N,,,, we have &, N, mn,m — Pn,N,,,m =
4N, ,m = on,m and further g, 1 2> Yy, 4 if Ry 2> 730 fOr
i =mn,..., Ny, which also holds for n = 1. Thus, we have
P, >V, , since P,, = q1,,» and PQ}YTERM is feasible only
if P,, > VU ,,. Besides, the solution with R;,,, = 7;m, Vi,
is feasible and P, = ¥y ,, since &1 N, ,mq1,m — P1,Ny,m =
qN,,,m = ON,,,m according to (28). Thus, Py¥ EM is feasible
if P, > ¥y ,,, which completes the proof.

C. Proof of Lemma 2

Given wy—1,m < Wi, the derivative of gy 1m (¢n,m)
is given by (29) on the top of next page. Consequently,
In,l,m (qmm) is a nondecreasing function and the optimum
gn.m 1s achieved by maximizing g, ,, until the feasibility
constraint 1p,—1 mGn—1,m — Bn—1,m > qn,m takes the equality.

D. Proof of Lemma 3

Assuming C3 holds, by setting the first-order derivative of
Gn.1.m (Gn,m ) to zero, we obtain a unique root I',, ; ,, according
to (29), where glg:iﬁ =0 . Moreover, it follows from
(30) on the top of next page that the second order derivative

o Pgnim
of gntm (qnm) at Ty pm is (11;(]27;
that '), ; ,, is the maximizer of gy i m (¢n,m). As proved in
Appendix B, gy > VU, p, is required due to the feasibility

constraints and we have ,, ;. = max {T'y 1m, Upom |-

< 0, corroborating

E. Proof of Lemma 4

Lemma 4 is proved via contradiction. For any fea-
sible solution &, 111,mQn1.m Pri+tm < Qyikm
with qi+1,m > Ql+1,k,m» the solution with dn,m =
(@i+1,m + Pri+1,m) /&n,i+1,m Yyields higher weighted sum
rate, since

fn,lJrl,an,m — Pn,l+1,m
> qi+1,m = €n,l+17an,m — Pn,l+1,m
> Ql+1,k,m > gn,l-l-l,an,l,m — Pn,l+1,m;

(32)

and thus g, m > Gn,m > Sy i,m. As for

QH—l,k:,'m > gn,l-l-l,an,m — Pn,l+1,m > qi+1,m>

the solution with ¢i4+1,m = &n,141,m%n,m — Pn,i+1,m achieves
an improvement since 41 k.m = Gi+1,m = Gi+1,m- If

Eni+1,mnm — Pi+1m = Uttkom = QUt1,ms

the solution with Gi1m = Qip1km and Gom =
(Qt1.km + Pnji+1,m) /&nir1m delivers a higher weighted
sum rate Since ¢pm > Gn,m > n,1,m With

6n,l+1,an,m — Pn,l+1,m

(33)
Z QlJrl,k,m 2 gn,lJrl,an,l,m — Pn,l+1,m-

Thus, we can increase the weighted sum rate with g;41 ,, =
End41,mAn,m — Pn,i+1,m if C4 is violated. Consequently, the
optimal solution achieves R}, = r;,, with violation of C4.

F. Proof of Theorem 1

As mentioned above, we have ¢ ,, = P, according to (6a).
Consequently, within the integrated subgroup U ,,, it can be
verified that q;;m = &1 n,mPm — P1,n,m. It follows from (11)
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that ®; ,,, is the maximizer of U, ,, provided that C3 is satisfied
for ¢ > 1. The optimal solution achieves ¢j, ., = Pty if
P, is sufficiently large, taking into account that ®, ,, is the
maximizer of U, ,, and the feasibility constraints are satisfied
due to Y, ®Pem — Ot > Piy1,m. However, if P, is not
sufficiently large, the optimum reduces to the feasible upper
bound, represented as

= gl,Jt,m,um

since the weighted sum rate function gj, 1, .m (q 7, mm)
is monotonically nondecreasing in qj, ,..m if ¢7, ,..m < Pt m.
Thus, we have

*
th,m.,m = P1,J¢ m.m

@y =min{&1 s, o m P = P1J s Pem ) (34)

for ¢ > 1. By substituting (28) into (34), q,*L’m can further be
formulated as (31) for n € U y,, t > 1.

G. Proof of Theorem 2

PWSRM can be written as

M
(Pmax_ Z Pm)
m=1

\Illm)7

The Lagrange of

M
L= Z Fo (Pr) + A
M
+ > i (P
m=1

where A and { um} _, are Lagrange multipliers, and the KKT
conditions are satisfied:

(35)

oL dF,,
— ™ _ =
9P, — db, + b =0, Vm, (36)
M
A (Pmax > Pm> =0,A>0, (37)
m=1
Hm (Pm - lI’1,m) = 07 Hm Z O,Vm (38)
If pn > 0, we have P, = Wy, and X > g5 If
tm = 0, we have A = 31}2’; < d(\lp?tn and P,, > ¥y,
since Cg; is monotonically decreasing in P,,, where d(\iI/F

is the derivative of F, (Py) at Uy, and can be obtained via
(20). Given the derivative value ), it can be mapped to an
associated group power P,,, and the coefficients &, (\) ,
Wy, (N) , &n(\) and  fpy, (M) are contingent upon the
intervals to which A corresponds. Then, it follows from (36)
that \ = g%:: + tm > 0. Finally, from (37), we have

Z%:l P,, = Phax, Which completes the proof.

H. Proof of Theorem 3

The Lagrange of P3VEEM can be written as

L= ZF —V(PT—I—ZP)

m=1

78 M
)\(Pmax_ZPm>+ZMm(Pm_\IILm)7
m=1 m=1

(39)

14
where A and {um} _, are Lagrange multipliers. Since
F,, (P,,) is concave and the constraints are linear, P3YE=EM

is a convex problem and the optimal solution is characterized
by the KKT conditions:

0L dF,,
—_— — — e 4
oD, — b, V= A+l =0,Vm, (40)
M
A (Pmax— > P) =0,1>0, (41)
m=1
Hm (Pm - \Ill,m) =0, pm >0, Ym. (42)
We denote v at the optimal value of PyVEEM ag p* and
A at the optimal point of PYVEEM a5 A\* when v = v*.

Suppose that PyVEEM g equivalent to PyVSEM | we can apply
Algorithm 2 to solve P3VEEM and achieve exactly the same
solution, i.e., P’ = P,YLVSR’*. It follows from (36) and
(40) that Awsg = v* + A*. Then, from [40], we have
G (Awsr) < 0 if Awsr > v*. In contrast, G (Awsr) > 0
suggests Awsr < v* < v* 4+ \*, which means the equivalence
between PWEEM and ng SRM {ges not hold. Thereby, the
validity of the transformation is equivalent to G (Awsr) < 0.
If G(A\wsr) < 0, P3VEEM and PWVSEM yield the same

optimal solution, thus P,, = PY5R-* and 2%21 P, = Ppax.
M

Subsequently, G (Awsr) < 0 can be transformed into

m=1
Fp (PYSR*) — Awsr (Pr 4+ Pmax) < 0, thereby proving
Theorem 3.

1. Proof of Theorem 4

If Pr < P, the WEEM can not be equivalently trans-
formed into WSRM and we have Zi\n/lzl P, < Ppax. It
follows from (41) that A = 0, x = v. Next, from (40) and
(42), it can be verified that Py, = W1,n, fir > 0if x > g
and x = dF ap= if P > Wy 4. Then, the power budget P, can
be obtalned Via (26) and we have G (v) = G (x) = 0. As for
Pr > P{ahr, the WEEM can be equivalently transformed into
WSRM and we have x = Awsr since (26) is the same as that
of (22). In this case, we have

Fp(Pn)— v+ N ( Pr+ %_1 Pm)
=G ()

M
) (PT+ > Pm> <o,

m=1

M
- A <PT+ Z Pm,)

m=1

which completes the proof.

J. Proof of Theorem 5

Suppose that y < dd?;n we have P, > Aoy > Uy
since P, is monotonically decreasing in . Consequently, it

can be verified that p,,, = 0 according to (42). Then, A = 0
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dFVYL —_—
> AP,

rding to (41) and Z%Zl P,, < Ppax. In this case

x and P, is specified in (27d). Next, we expand G () as

M M
GO =3 P (Pm>—x(PT+ > Pm)

It can be verified that x =

m m=1

M=

M
. [Gl,m (Pm) + Tl,m} — X (PT+ Z_:l Pm)

M W1.m A1 mé1.mB
=X [wl,ch log (—l’m iz ) + Tl,m}
m=1
- Pr+ % W1,m Be +ﬁ1,m _ 1
X T =1 vin2 E1m &1.méi,m
=C — Aln(x) — Bv.
43)

is equal to B¢

< 7N
BS[ov
3]
=Q
o ~—

S B . .
w (%e%>, which implies %67 = 26% since W () is
the inverse function of ze®. So In(x) = C;B X and thus

Aln

(x) + Bx — C = 0. Therefore, we have G (x) = 0 and

x* = %W (%e%).
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